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Definitions 
Attributes: Characteristics that affect the reliability of a bridge or bridge element. 

Condition Attributes: Characteristics that relate to the current condition of a bridge or bridge element. 
These may include element ratings, component ratings, and specific damage modes or mechanisms that 
have a significant effect on the reliability of an element.  

Consequence Factor: Factor describing the expected outcome or result of a failure. 

Damage mode: Typical damage affecting the condition of a bridge element (e.g. spalling of concrete, 
cracking. etc.). 

Delphi process: The Delphi process is a method of expert elicitation that involves consulting a panel of 
experts through a series of systematic feedback rounds to develop consensus opinions on parameters 
needed for decision-making. Experts are surveyed anonymously and then consensus is formed.  

Design Attributes: Characteristics of bridge or bridge element that are part of the element’s design. These 
attributes typically do not change over time except when renovation, rehabilitation or preservation 
activities occur.  

Deterioration mechanism: Process or phenomena resulting in damage to a bridge element (e.g., 
corrosion, fatigue, etc.). 

Element: Identifiable portions of a bridge made of the same material, having similar role in the 
performance of the bridge, and expected to deteriorate in a similar fashion.  

Failure: Termination of the ability of a system, structure or component to perform its intended function 
(API 2016). For bridges, the condition at which a given bridge element is no longer performing its intended 
function to safely, and reliably, carry normal loads and maintain serviceability. 

Loading Attributes: Loading characteristics that affect the reliability of a bridge or bridge element such as 
traffic or environment.  

Occurrence Factor: Factor describing the likelihood that an element will fail during a specified time 
interval.  

Operational Environment: The operational environment is a combination of the circumstances 
surrounding and potentially affecting the in-service performance of bridges and bridge elements. These 
include typical loading patterns, ambient environmental conditions, construction quality and practices, 
maintenance and management practices, and other factors which may vary between different geographic 
regions and/or organizational boundaries.  

Probability: Extent to which an event is likely to occur during a given time interval (API 2016). This may 
be based on the frequency of events, such as in the quantitative probability of failure, or on degree of 
belief or expectation. Degrees of belief about probability can be chosen using qualitative scales, ranks or 
categories such as “Remote / Low / Moderate / High” or “Remote / Unlikely / Moderate / Likely / Almost 
Certain.” 

Reliability: Ability of an item, component, or system to operate safely under designated operating 
conditions for a designated period of time or number of cycles. 

Risk: Combination of the probability of an event and its consequence. 

Risk Analysis: Systematic use of information to identify sources and estimate the risk. Information can 
include historical data, theoretical analysis, informed opinions and engineering judgment. 
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Risk Model: A collection of attributes, criteria, and weights used to assess the level of risk.  

Screening Attribute: Characteristics of a bridge or bridge element that:  

• Make the likelihood of serious damage unusually high,  
• Make the likelihood of serious damage unusually uncertain,  
• Identify a bridge with different anticipated deterioration patterns than other bridges in a group 

or family.  
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Executive Summary 
The goal of this project was to improve asset management through the implementation of Risk-Based 
Inspection (RBI) practices. The research was intended to amplify the results of the NCHRP research that 
produced report NCHRP 782, Proposed Guidelines for Reliability-Based Inspection Practices (NCHRP 782) 
(Washer et al. 2014). The framework described in that report is part of the revised National Bridge 
Inspection Standards (NBIS) published in 2022. The new rules allow bridge owners to develop extended 
inspection interval policies that include risk-based intervals of up to 72 months for bridges in good 
condition. 

The project studied this new process for developing extended inspection interval policies for bridges. Prior 
tasks in the research included Reliability Assessment Panels (RAPs) from six states developing risk models 
for bridges with steel and prestressed concrete (PSC) superstructures. The risk models assess the relative 
risk of individual bridge components based on attributes that affect the reliability of the component. A 
back-casting process described in NCHRP 782 was applied to a sample population of bridges from the six 
states. This report describes the back-casting process and results developed through the research. A new 
data-driven methodology for analyzing the quality and effectiveness of the risk models based on Monte 
Carlo (MC) simulations was developed through the research.  

Chapter 1 of the report includes an analysis of the new NBIS requirements and associated FHWA guidance 
for inspection intervals that provided target ranges for risk models based on the condition rating (CR) of 
bridge components. These target ranges provide guidance for analyzing risk models and identifying risk 
levels. This analysis also proposed a modification to the risk matrix initially included in the NCHRP 782 
report referenced in the NBIS. This revised matrix allows for bridges assigned a consequence factor (CF) 
of high to be assigned a 72-month inspection interval when the Occurrence Factor (OF) category is remote. 
The proposed change to the risk matrix was supported by the data from 60 sample bridges studied in the 
research.  

Chapter 2 of the report describes the results of back-casting of 60 sample bridges using risk models 
developed by RAPs in six states. The back-casting process used in this research consisted of examining 
individual bridge inspection records for a population of randomly selected bridges. Inspection reports 
from individual states were acquired and analyzed over the time interval of 2004 thru 2021. Risk scores 
were produced for each inspection year based on the attributes and criteria included in the risk models 
using a weighted sum scoring process. These data were analyzed to assess the quality and effectiveness 
of the risk models when applied to typical bridges. Sensitivity studies of the back-casting data were used 
to analyze methods of weighting attributes in the risk models.  

Chapter 3 describes a new data-driven methodology for analyzing the risk models using MC simulations. 
This methodology uses bridge inventory data to simulate the outcome from risk models when applied to 
a family of bridges. In this way the risk models can be analyzed, calibrated, and verified using data from 
bridges. It was shown that this methodology can be used to analyze different scenarios and to adjust 
attribute weights to meet target ranges.  

Chapter 4 includes the conclusions from the back-casting study. The primary conclusions from the study 
were as follows: 

• The analysis of components from the sample bridges showed that the weighted risk models were 
effective for determining the relative risk of bridge components and identifying bridge 
components with elevated risk.  

• Based on the back-casting results, it was found that 35% of the sample bridges could have an 
inspection interval of 72 months when the CF was moderate. If the CF were high, only 8% of the 
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bridges could qualify for a 72-month inspection interval. These results were based on randomly 
sampled bridges with component CRs ranging from CR 2 to CR 9 with an average CR of 6.  

• A separate analysis of bridges in good condition (i.e., CR ≥ 7) showed that 100% of these bridges 
could have a 72-month interval when the CF was moderate. If the CF were high, 46% of the bridges 
in good condition could have an inspection interval of 72 months. These data indicate that 
implementing a risk-based extended inspection interval policy could place a substantial number 
of bridges in good condition on a 72-month inspection interval. This will allow for the reallocation 
of inspection resources toward bridges with elevated risk, which is the primary goal of any risk-
based inspection approach.  

• A methodology based on MC simulation was developed for analyzing the risk models and 
predicting their performance when applied to a family of bridges. It was shown that this 
methodology can be used to analyze different scenarios and to adjust attribute weights to meet 
target ranges. Importantly, the research showed that this approach was effective for identifying 
components in good condition that represent elevated risk when compared with the risk model 
simulations. The MC simulation methodology can be used to identify those bridges that present 
elevated risk and require shorter inspection intervals and those that do not have elevated risk. This 
is precisely the objective of the risk analysis.  

• It was shown that the methodology developed in the research based on MC simulation was 
successful in identifying components with elevated risk and could be used to demonstrate the 
quality of the risk models. This can provide a critical tool for implementation of the RBI approach 
and gaining approval of extended inspection interval policies.  
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Chapter 1.  
Introduction 

The goal of this project was to improve asset management through the implementation of Risk-Based 
Inspection (RBI) practices. The research was intended to amplify the results of the NCHRP research that 
produced report NCHRP 782, Proposed Guidelines for Reliability-Based Inspection Practices (NCHRP 782) 
(Washer et al. 2014). The report described a framework for the RBI of bridges that envisioned extended 
inspection intervals for low-risk bridges. The framework described in that report is part of the revised 
National Bridge Inspection Standards (NBIS) published in 2022 (USDOT 2022). The new rules allow bridge 
owners to develop extended inspection policies that include risk-based intervals of up to 72 months for 
bridges in good condition. Prior to this revision to the NBIS, the maximum allowable routine inspection 
interval was 48-months for bridges that met certain subjective criteria defined by the Federal Highway 
Administration (FHWA) (FHWA 1988). The new process allows individual bridge owners to develop risk-
based criteria based on analysis by a Reliability Assessment Panel (RAP) formed from key agency staff with 
knowledge of bridge design, evaluation, inspection, and maintenance practices.  

This project studied this new process for developing extended inspection interval policies based on risk. 
Prior tasks in the research included RAPs from six states developing risk models for bridges with steel and 
prestressed concrete (PSC) superstructures. The risk models assess the relative risk of individual bridge 
components based on attributes that affect the reliability of the component. A back-casting process 
described in NCHRP 782 was applied to a sample population of bridges from the six states. The back-
casting process consists of applying the risk models developed by a RAP to historical bridge performance 
to assess if the risk models were appropriately considering risk factors. The purpose of the back-casting is 
to verify the effectiveness of the risk models for determining suitable inspection intervals for bridges.  

This report describes the back-casting process, developments, and results developed through the 
research. The back-casting process used in this research included examining individual bridge inspection 
records for a population of randomly selected bridges. Inspection reports from individual states were 
acquired and analyzed over the time interval of 2004 thru 2021. The condition rating (CR) of bridge 
components, element condition state (CS) data (when available), and inspection notes were studied to 
assess attributes included in the risk models developed by the RAPs. Risk scores were produced for each 
inspection year based on the attributes and criteria included in the risk models using a weighted sum 
scoring process. These data were analyzed to assess the quality and effectiveness of the risk models when 
applied to typical bridges. The risk models were modified over the course of the study based on initial 
results from back-casting, emerging NBIS requirements, and sensitivity studies conducted as part of the 
research.  

The primary objectives of the back-casting were as follows: 

1. Determine if the risk models developed by the RAPs were effective for characterizing the relative 
risk of individual bridge components.  

2. Develop a process for analyzing the risk models to determine appropriate weights for attributes.  

This report documents the results of the back-casting and analysis of the risk models. A new methodology 
for assessing the risk models that will support practical implementation of the technology was developed 
and is described in this report. This new methodology provides a data-driven process for analyzing the 
risk models, calibrating the weights of attributes and criteria in the risk models, and assessing the outcome 
of implementing an extended inspection interval for a family of bridges.  

The report provides a review of the overall process for developing RBI intervals for bridges in the 
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background section. An analysis of the new NBIS requirements and how the requirements apply to risk 
analysis for bridges is provided to set the stage for reporting the results of the back-casting. Chapter 2 
describes the back-casting process used in the research and the results from data analysis. Chapter 3 of 
the report presents the new methodology developed in the research to provide a data-driven approach 
to analyzing the risk models to support practical implementation of the technology. Chapter 4 includes 
the conclusions from this task of the research and a discussion of implementation challenges.  

1.1. Background 
This section provides a brief overview of the RBI process studied through the research. The RBI process 
discussed in this summary is based on previous research reported in NCHRP Report 782, “Proposed 
Guideline for Reliability-based Bridge Inspection Practices.” (Washer, Connor et al. 2014)  

The process of risk-analysis for RBI has two primary components known as the Occurrence Factor (OF) 
and the Consequence Factor (CF). The OF is an estimate of the likelihood of a serious condition (CR 3) 
developing in the next 72 months for a particular bridge component (i.e., deck, superstructure, or 
substructure) considering a particular damage mode (e.g., delamination and spalling). The OF is analogous 
to a probability of failure (POF). A single bridge component may have multiple OFs based on the damage 
modes that are likely to affect the component. The CF assesses the potential consequences of a bridge 
component deteriorating to a serious condition in terms of safety and serviceability (Washer, Connor et 
al. 2014). Generally, the CF depends on load capacity, Average Daily Traffic (ADT), structural redundancy, 
and the feature under the bridge. 

The OF is estimated based on attributes of bridge components, which are characteristics of a bridge 
component that affect its reliability. Generally, these attributes are characteristics that affect the 
durability of the component, such as the level of corrosion protection, traffic loading, and current 
condition. During the initial stages of this project, RAP meetings were held to identify and prioritize 
attributes for different bridge components and damage modes. Criteria for rating the attributes were also 
developed. The collection of attributes and associated criteria used to determine the OF is termed a risk 
model. The risk model is used to calculate a risk score for each damage mode using a weighted sum model.  

The OF and the CF are combined to locate a particular bridge component on a risk matrix as shown in 
Figure 1.1. Bridge components that tend toward the lower left corner of the matrix have lower risk and 
require less frequent inspections. Components that tend toward the upper right corner have higher risk 
and require more frequent inspection. The bridge inspection interval is determined from the component 
representing the highest risk. Inspection intervals envisioned by the methodology range from 12 to 72 
months with the lowest-risk bridges assigned a 72-month interval.  

The risk models developed in this project generally conform to the FHWA guidance for RBI intervals 
published in the National Bridge Inspection Standards in 2022 (USDOT 2022). This update to the NBIS 
provided new requirements for implementing RBI intervals that were used in the research to assess the 
risk models and develop processes that will meet the new requirements. The following section analyzes 
the new requirements and discusses how these requirements were implemented within the research. 

1.2. RBI and NBIS Analysis 
The update to the NBIS published in 2022 included requirements for implementing risk-based inspection 
intervals for routine, underwater, and Nonredundant Steel Tension Member (NSTM) inspections (USDOT 
2022). The FHWA subsequently issued a memorandum with the subject “National Bridge Inspection 
Standards Inspection Interval Guidance” to provide additional information and assistance for bridge 
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owners implementing the new NBIS requirements (FHWA 2022). This memo addressed the two methods 
identified in the NBIS for determining the inspection interval, named Method 1 and Method 2. Method 1 
is a simplified risk assessment approach to determine reduced and extended intervals for routine, 
underwater, and NSTM inspections. Extended intervals of up to 48 months are allowed for bridges 
meeting certain criteria defined within the NBIS and clarified with the FHWA guidance memo. In general, 
Method 1 requires that bridge components have a CR of 6 or higher, have a load rating factor (LRF) of 1.0 
or greater, minimum vertical clearance of at least 14 ft, and minimal scour vulnerability. Bridge owners 
must also consider other factors such as material, ADT, design, etc. in developing a Method 1 policy.  

 
Figure 1.1. Conceptual risk matrix for risk-based bridge inspection. 

Method 2 is a more rigorous approach that allows for risk assessment by quantified statistical analysis and 
/ or qualitative expert judgement. The maximum routine inspection interval using Method 2 is 72 months. 
The risk models formed in this project are the first risk models and processes developed using Method 2 
under the new policies. This section of the report summarizes the requirements for the two 
methodologies to provide context on the needs, criteria, and opportunities within the new risk-based 
approached to inspection planning. Certain data from the implementation of Method 2 in this research 
are also presented to illustrate how the new requirements align with research results.  

1.2.1. Method 1 Analysis 
Method 1 allows for bridges meeting certain criteria to have extended routine inspection intervals of up 
to 48 months. Table 1.1 summarizes the criteria established in the NBIS and the FHWA memo for an 
extended 48-month inspection interval. The detailed criteria shown in Table 1.1 refer to items defined in 
the traditional FHWA Recording and Coding Guide (i.e., the coding guide) and the new Specifications for 
the National Bridge Inventory (SNBI) (FHWA 1995, FHWA 2022). A description of the items indicated by 
the coding guide and SNBI codes in Table 1.1 are listed below the table for reference. 

A key element of Method 1 is that bridges which meet the criteria can be assigned 48-month inspection 
intervals without FHWA approval when the bridge owner establishes an extended inspection interval 
policy. The extended interval policy must consider other factors such as structure type, design, materials, 
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etc. determined by the bridge owner. The factors identified by the bridge owner are intended to capture 
other risks not included in the Method 1 requirements based on engineering judgement and knowledge 
of their bridge inventory. This allows the bridge owner to assign the 48-month interval for any bridge 
meeting the identified NBIS criteria and additional factors the owner has included in their extended 
interval policies. The routine inspection interval is reduced to the traditional 24-month interval when one 
or more of the Method 1 criteria are not met.  

Table 1.1. Summary of FHWA requirements for Method 1 analysis. 

 
1 A) Bridge carries routine permit loads. Load capacity is adequate for all routine permit loads; no 
routine permit loads are restricted. 
2 N= No E/E’ details 
3 Coding Guide Materials: 2. RC continuous, 3. Steel, 4. Steel Continuous, 5. PSC 
4 SNBI Materials: C01. Reinforced concrete – cast-in-place, C02. Reinforced concrete – precast, 
C03. Prestressed concrete – pre-tensioned, C04. Prestressed concrete – cast-in-place post-
tensioned, C05. Prestressed concrete – precast post-tensioned, S01. Steel – rolled shapes, S02 
Steel – welded shapes. S03 Steel – bolted shapes, S04. Steel – riveted shapes, S05. Steel – bolted 
and riveted shapes 
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5 Coding guide span types: 01. Slab, 02. Stringer/Multi-beam or Girder, 05. Box Beam or Girders – 
Multiple 
6 SNBI Span types: A01. Arch – under fill without spandrel, B02. Box girder/beam – multiple 
adjacent, B03. Box girder/beam – multiple spread, F01. Frame – three-sided, F02. Frame – four-
sided, G01. Girder/beam – I-shaped adjacent, G02 Girder/beam – I-shaped spread, G03 
Girder/beam – tee-beam, G04. Girder/beam – inverted tee-beam, G05 Girder/beam – double-tee 
adjacent, G06. Girder/beam – double-tee spread, G07. Girder/beam – channel adjacent, G08. 
Girder/beam – channel spread, P01. Pipe – Rigid, P02. Pipe – Flexible, S01. Slab – solid, S02. Slab 
– voided. 
7Scour Critical Bridges (Coding Guide): 5) Bridge foundations determined to be stable for 
calculated scour conditions; scour within limits of footing or piles, 8) Bridge foundations 
determined to be stable for assessed or calculated scour conditions; calculated scour is above top 
of footing, N) Bridge not over waterway.  
8 SNBI Scour: A. Scour appraisal completed. Bridge determined to be stable for scour, B. Scour 
appraisal completed. Bridge determined to be stable for scour, dependent upon designed and 
functioning countermeasures. 

The criteria for Method 1 do not consider durability characteristics of a bridge such as corrosion 
protection, the aggressiveness of the environment, or other factors that could affect the likelihood of 
future deterioration and damage. It is also notable that there are no criteria related to the Average Daily 
Traffic (ADT) for a bridge, feature under the bridge, or the degree of redundancy. The Method 1 
requirements imply any members that are not defined as NSTMs can be treated equally in terms of 
redundancy when establishing a 48-month inspection interval, although owners may include redundancy 
factors in their policies.  

The Method 1 criteria may be useful for analyzing a Method 2 assessment to determine if the assessment 
generally meets FHWA requirements, although there can be differences since the Method 2 analysis 
involves different criteria and a more rigorous approach to the analysis. A primary difference between 
Method 1 and Method 2 is that various attributes that affect the likelihood of damage developing in the 
future are incorporated in Method 2. Method 1 analysis relies entirely on the present condition of the 
bridge. As a result, a Method 2 analysis may produce different criteria than Method 1. However, the 
Method 1 criteria provide a general framework for RBI analysis when implementing intervals determined 
through Method 2 analysis. For example, the Method 1 scour vulnerability criteria are likely to be required 
under most Method 2 risk models. It should be noted that there is not an explicit requirement that the 
Method 1 criteria be met when implementing Method 2. For example, one of the Method 1 criteria 
prohibits bridges with category E or E’ details, which have a high susceptibility to fatigue cracking as 
compared with other steel details, from having an extended interval. If the bridge had minimal loading 
such that likelihood of fatigue damage was remote or an analysis showed infinite fatigue life, a Method 2 
analysis could be used to establish an extended routine inspection interval.  

1.2.2. Method 2 Analysis  
Method 2 is a more rigorous process for risk assessment that allows routine inspection intervals of up to 
72 months based on a risk assessment process developed by a RAP. The method requires a set of screening 
criteria be used to determine how bridges will be considered in the assessment and to establish maximum 
inspection intervals. Five different requirements for screening criteria are listed as shown in Table 1.2. The 
first three required screening criteria are to be developed by the RAP and must include flexural and shear 
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cracking in concrete members, fatigue cracking and corrosion in steel members, and criteria for 
considering details, loadings, conditions, etc. that are likely to affect safety and serviceability of bridges. 
The final two required screening criteria are specified and indicate the maximum allowable inspection 
intervals based on general condition ratings (CRs). These requirements indicate that the maximum interval 
for bridges classified as being in “Fair” condition, i.e., bridges with a lowest component rating of CR 5 or 
CR 6, is 48-months (FHWA 2022). The maximum interval for bridges classified as being in “Poor” condition, 
i.e., CR less than or equal to 4, is 24 months.  

The required screening criteria indicate that only bridges classified as in “Good” condition, i.e., with CRs 
of 7 or greater, are eligible for a 72-month interval. Bridges in “Fair” condition have a maximum interval 
of 48 months, indicating that bridges with CR 5 or 6 could be eligible for a 48-month interval even if the 
bridges do not meet the Method 1 criteria. For example, a bridge that does not meet one or more of the 
criteria for an extended intervals under Method 1 may be eligible for an extended interval if Method 2 
analysis is completed. 

Table 1.2. Required screening criteria for Method 2 analysis. 

No. Requirement  
1 Requirements for flexure and shear cracking in concrete primary load members 
2 Requirements for fatigue cracking and corrosion in steel primary load members 
3 Requirements for other details, loadings, conditions, and inspection finding that are likely 

to affect the safety or serviceability of the bridge or its members 
4 Bridges classified as in poor condition cannot have an inspection interval greater than 24 

months;  
5 Bridges classified as in fair condition cannot have an inspection interval greater than 48 

months 

Requirements for attributes and deterioration modes that should be included in a risk model are 
summarized in Table 1.3. The table rows are numbered 1-5 for reference. Row 1 of the table provides a 
list of the attribute types that must be included in each analysis, including material properties, loads, safe 
load capacity, and condition. Several deterioration modes based on the material that forms the bridge are 
required as shown in rows 2 and 3. The deterioration modes for steel members must include section loss, 
fatigue, and fracture. For concrete members, the models should include damage modes of flexural 
cracking, shear cracking, and corrosion of reinforcing steel. There are also component-level requirements 
described for the bridge superstructure and substructure (rows 4 and 5). Superstructure member 
deterioration modes must include settlement, impact damage, rotation, and overload. Substructure 
component deterioration modes must include settlement, rotation, and scour.  

Most of the deterioration modes and attributes included in the FHWA guidance documents are addressed 
by the risk models developed in this project. The FHWA guidance provided a general framework for the 
analysis of these risk models. Importantly, the guidance provided some target ranges for the analysis that 
were used to update the risk matrix that defines the inspection intervals for bridges as discussed in the 
following section. 

1.3. Target Ranges for Risk Models  
The general framework provided by the FHWA guidance and the updated NBIS requirements provide 
some expected outcomes from a risk assessment for determining extended inspection intervals. This 
framework can be used to make judgements on the risk matrix used to determine the inspection intervals 
for bridges based on the OF and CF determined from a Method 2 risk-based analysis. This section of the 
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report discusses proposed changes to the risk matrix based on a combination of the revisions to the NBIS, 
the associated guidance provided by FHWA, and results from the back-casting.  

Table 1.3. Attributes required for Method 2 analysis.  

Row 
No. Category Attributes 

1 Attributes for each assessment must include: Material Properties, Loads, Safe Load 
Capacity, and Condition 

2 Steel members damage modes must include: Section loss, Fatigue, and Fracture 

3 Concrete members damage modes must 
include: 

Flexural Cracking, Shear Cracking, and 
Steel Corrosion 

4 Superstructure members damage modes must 
include: 

Settlement, Vehicle/vessel impact, 
Rotation, and Overload 

5 Substructure members damage modes must 
include: Settlement, Rotation, and Scour 

The project that produced NCHRP Report 782 was the initial effort to develop a reliability-based bridge 
inspection practice that could be implemented for highway bridges in the US. The project developed a 
framework for risk-based inspections that was subsequently adopted in the new NBIS. However, the study 
did not include broad implementation of the framework developed through the research. Further, the 
2022 revisions to the NBIS and associated guidance from the FHWA were not available at the time of the 
study. Therefore, the framework developed in NCHRP 782 needed to be assessed in terms of the new 
NBIS requirements to enable the implementation of the new policies into practice.  

The NCHRP study proposed a risk matrix for typical bridges as shown in Figure 1.2. The 4 x 4 matrix shows 
the OF on the ordinate (i.e., vertical axis) and the CF on the abscissa (i.e., horizonal axis). The original risk 
matrix included inspection intervals ranging from 12 to 96 months based on the OF and CF for a given 
component and damage mode, as shown in the individual elements of the matrix. The specific elements 
in the matrix are identified based on their location defined using the nomenclature [Rrow,column], referenced 
from the bottom left corner of the matrix. For a component damage mode rated as OF 4 (high) and a CR 
of 4 (severe) the element [R4,4] indicates a 12-month inspection interval. For a component damage mode 
rated as having an OF 1 (remote) and a CF of 1 (low), the inspection interval would be 96 months based 
on the original risk matrix.  

The new NBIS requirements can be used to analyze the original risk matrix proposed in NCHRP 782 by 
comparing the ordinate and abscissa values in the original matrix to the new rules. This analysis provides 
some general guidance on the appropriate inspection intervals for the different elements of the risk 
matrix.  

Considering the ordinate, the Method 1 guidance and NBIS requirements designate 48 months as a 
suitable inspection interval for components in CR 6, provided the component is not an NSTM and is located 
within a structure meeting the other Method 1 criteria. Potential consequences are not considered 
explicitly. This provides general guidance on how the elements on the ordinate should be defined because 
CR 6 components can have a 48-month interval regardless of the CF. Since Method 1 considers that any 
CR 6 component is potentially suitable for a 48-month inspection interval, it will follow that a Method 2 
analysis should also identify most CR 6 components suitable for at least a 48-month interval. It should be 
noted that the weighted sum model used to score the risk models produces results ranging from remote 
to high, so not all bridge components of any particular CR will lie in a particular element in the matrix. 
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Rather, the risk model for a particular component will produce OF scores over a range of values based on 
the attributes and criteria identified by the RAP and the component being assessed.  

 

 
Figure 1.2. Risk matrix proposed in NCHRP Report 782 showing inspection intervals.  

Based on engineering judgement, most CR ≥ 7 components are expected to have a lower OF compared to 
most CR 6 components, and most CR 6 components should have a lower OF than most CR 5 components. 
Based on the risk matrix with four categories for the OF, most CR ≥ 7 components are expected to score 
in the range of remote to low, most CR 6 components would rank in the low to moderate range, and most 
components in CR 5 would lie in the moderate to high range. Figure 1.3 illustrates a risk matrix showing 
these ranges on the ordinate. These ranges provide a reasonable and rational ordering of the expected 
OF values for components based on the CR. The ranking for individual components is refined by the risk 
models developed by the RAP. For example, certain CR 6 components may score lower than certain CR 7 
components when the risk factors (i.e., attributes) in the risk models are assessed.  

The horizontal axis can also be analyzed based on the new NBIS rules to infer values in the risk matrix. It 
is assumed in this analysis that the CF is generally defined in terms of the load capacity of the bridge as 
expressed by a load rating factor (LRF), the degree of redundancy, feature under the bridge, and traffic 
volumes (e.g., ADT).  

NSTMs require a hands-on inspection at a standard interval of 24 months, which can be extended to 48 
months if the criteria for Method 1 for NSTMs are met or if an RAP is used to develop a suitable risk model 
for NSTM inspection. The Method 1 criteria for NSTMs are similar to those for routine inspection but 
include additional criteria that consider the age of the structure and its fatigue resistance. Historically, the 
rationale for considering NSTMs differently than redundant steel tension members is an assumed 
potential for catastrophic collapse resulting from member failure. This is a severe consequence, column 4 
in the risk matrix as shown in Figure 1.3. Certain other bridges such as some non-redundant concrete 
members, structures with only three primary members and wide beam spacing, or other situations where 
the consequence of severe damage presents substantial risk of life may also have a CF characterized as 
severe. Most bridges that do not have NSTMs will generally be described as having low, moderate, or high 
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consequences, based characteristics such as the ADT, feature under the bridge, LRF, etc. The Method 1 
policy for routine inspections allows components in CR 6 to have an inspection interval of 48 months 
regardless of the CF being low, moderate, or high. All elements in the risk matrix shown in Figure 1.2 
except column 4 can considered 48-month for CR 6 components under the Method 1 approach. 

 
Figure 1.3. Figure showing risk matrix with target ranges for the OF and CF general descriptions. 

Most common bridges will have a moderate or high CF. A bridge with a low CF is assumed to be a bridge 
with uncommonly low ADT and no highway or rail feature under, as shown in Figure 1.3. It is notable that 
the Method 1 criteria make no mention of ADT levels on or below a bridge, although it is among the 
factors bridge owners might consider in their extended interval policy. It is reasonable to expect that high 
ADT alone does not preclude a bridge from a 72-month interval, since ADT is not required in the Method 
1 criteria for extended inspection intervals. Further, most CFs are expected to identify very high ADT as 
an attribute for components with a high CF. Based on these assumptions and understanding of the NBIS 
requirements, row 1 of the risk matrix shown in Figure 1.2 should be 72 months for any CF that is not 
severe, such that a CR ≥ 7 bridge with remote likelihood of failure qualifies for a 72-month interval for CFs 
of low, moderate, or high.  

The distribution of values for components in different CRs shown in Figure 1.3 was substantiated when 
risk models developed by individual RAPs in this project were applied to real bridges. As will be shown in 
greater detail later in the report, the target values described that consider CR ≥ 7 components typically 
having OF in the remote or low range, and CR 6 components typically having an OF low or moderate, etc., 
were close to those produced from the risk models developed by the individual RAPs and applied to the 
sample bridges. For example, Figure 1.4 shows a cumulative probability distribution for the OF stemming 
from the deck component of the 60 sample bridges studied in the back-casting. The abscissa shows the 
OF category ranging from remote to high at the bottom of the plot and the numerical values for the risk 
score at the top of the plot. The ordinate shows the probability for a randomly selected bridge deck with 
a certain risk score based on the attributes and criteria defined by the RAPs in the study. The curve was 
produced from the original, unweighted risk model developed by the individual RAPs and the risk scores 
obtained through the back-casting analysis that applied the risk models to components of the 60 sample 
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bridges. The 60 bridge decks from six states were combined and treated as a single sample population to 
provide the mean and standard deviation needed to form the cumulative probability distribution plot 
shown in the figure. The figure shows that for decks with CR ≥ 7, 54% of decks scored in the remote range, 
while 46% have scores ranging from the low to moderate range. Those decks scoring in the remote range 
are decks with CR ≥ 7 that scored 1.0 or less according to a risk model that included attributes such as the 
CR, CS, rate of chloride application, ADT, corrosion protection level, etc. In other words, these are decks 
in good condition with good durability characteristics and consequently remote POF (i.e., the likelihood 
of deteriorating to a CR 3 in the next 72-month interval is remote). Decks with CR 6 have increased risk, 
with only ≈8% of decks expected to score in the remote range, ≈61% scoring in the low range, and the 
remaining ≈31% scoring in the moderate or high range. Decks in CR 5 are scored with ≈32% in the low 
range, ≈44% scoring in the moderate range, and ≈18% scoring in the high range. The specific percentage 
values will obviously vary for different components and different risks models, but these results illustrate 
the general behavior and trends of the risk models developed by the RAPs and applied to actual bridges. 
Specifically, the plot shows that the attributes and criteria developed through a Method 2 process 
identified decks in CR ≥ 7 as having relatively lower risk than decks with CR of 6 or 5. Within the group of 
CR ≥ 7 decks, components were rated as having remote, low, or moderate likelihood, which identifies 
those low-risk components that may be suitable for a 72-month inspection interval and those components 
with elevated risk.  

Methods to calibrate the individual risk models to improve the quality of the results were developed 
through the research based on sensitivity studies of the back-casting results. A systematic approach for 
analyzing and calibrating the risk models using Monte Carlo (MC) simulations was developed and is 
presented in the report. The initial, raw values shown in Figure 1.4 taken directly from the RAP models 
developed through the study and applied to real bridges, combined with the FHWA guidance on extended 
intervals, form the initial expectations for risk categories and risk scores as a function of the CR of a 
component and provide target ranges for analysis of individual risk models.  

1.3.1. Proposed Changes to the Risk Matrix  
Changes to the original risk matrix from NCHRP 782 report may be justified considering the analysis of the 
new NBIS requirements and associated target ranges for components with different CRs. Additionally, a 
much more robust calibration and validation of risk models has been completed through this project. 
Figure 1.5A shows the original risk matrix from NCHRP 782 and Figure 1.5B shows the risk matrix being 
proposed herein, with changes encircled on each risk matrix. As noted above, most CR ≥ 7 components 
tend to score in the remote to low range for OF. Since the policy allows a 72-month interval only for 
bridges with components with CR 7 or greater, it seems rational that the matrix elements [R1,1], [R1,2], and 
[R1,3] should be 72 months. This allows that CR ≥ 7 components with remote likelihood of failure to have 
a 72-month interval for any CF other than severe. The matrix element [R2,3] is assigned 48-months and 
provides granularity in the analysis that aligns with the Method 1 approach that a CR 6 bridge with a high 
CF can have a 48-month interval. In this way bridges with CF of high are only eligible for 72-month if the 
OF is remote, and the inspection interval is reduced to a 48-month interval when the likelihood is 
increased from remote to low (i.e., OF = low).  
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Figure 1.4. Example cumulative probability distribution function for sample bridge decks.  

 
Figure 1.5. Original risk matrix in NCHRP 782 (A) and the proposed risk matrix (B) showing inspection 

intervals (months). 

The risk matrix provides a very rational hierarchy shown in Table 1.4 for components with CF of high, 
meaning a bridge has elevated risk based on the CF attributes. A 72-month interval is only possible for CR 
≥ 7 components with remote OF for components with a high CF. If the OF for a CR ≥ 7 component is low 
then the interval is 48 months. Components in CR 6 are expected to have OFs of low, resulting in the 48-
month interval which aligns with the Method 1 approach. If the CR 6 component has a OF score of 
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moderate then the assigned interval will be 24-months, which is more conservative than the Method 1 
approach that does not consider the consequence explicitly. If a CR 6 component OF is remote, it seems 
to qualify for a 72-month interval, although NBIS requirement does not allow a 72-month interval. 
Regardless, the results from back-casting and MC simulations presented later will demonstrate that there 
is a relatively low probability of CR 6 components with a risk score of 1.0 or less. For CR 5 components, 
the interval of 48 months will only apply if the OF is low or remote, which is expected to be a relatively 
small proportion of CR 5 components. Most CR 5 components will score in the moderate range or high 
range with an assigned interval of 24-months when the CF is high.  

This analysis of the new NBIS requirements and their intersection with practical application of risk models 
provides sound rationale for modifying the risk matrix originally proposed in NCHRP 782. The original 
matrix from the NCHRP report is shown in Figure 1.5A and the proposed matrix to be used considering 
the new NBIS requirements is shown in Figure 1.5B. The following changes to the original risk matrix are 
proposed: 

• The matrix location [R1,1] should be 72 months, since 96-month intervals are not allowable under 
the NBIS. (It should be noted that should the NBIS be modified in the future, this value could be 
replaced with 96 months with no negative impacts with respect to the calibration performed 
herein.) 

• The position R1,3 was originally indicated as a 48-month interval but is proposed as a 72-month 
interval to provide appropriate granularity to sort bridges into different “bins” in terms of risk. 
Assigning a 72-month interval allows that when the likelihood of serious damage is remote and 
the CF is high, a 72-month interval is allowable. 

Table 1.4. Risk-based inspection intervals for components with CF of high.  

Condition 
Rating 

OF 
Interval 

(Months) 
CR ≥ 7 Remote  72  
CR ≥ 7 Low 48  
CR 6  Low 48  
CR 6 Mod 24  
CR 5 Low 48  
CR 5 Mod 24  
CR 5  High 24 

This analysis and proposed risk matrix were used to provide “target ranges” for the analysis of the RAP-
developed risk models. Although fixed values were not used explicitly, the target ranges for components 
were as follows:  

• Most components rated in CR ≥ 7 have risk scores in the remote range for the OF. 
• Most components rated in CR 6 have risk scores in the low or moderate range for the OF, 

indicating increased risk as compared with components rated in CR ≥ 7 and less risk than 
components rated in CR 5.  

• Components rated in CR 5 present increased risk as compared with components rated in CR 6 
with many having risk scores in moderate to high category for the OF.  

Here we consider “most” as being more than ≈60% of components rated in CR 7 will have a remote 
likelihood of deteriorating to a CR 3 in the next 72 months. These quantitative proportions are subjective, 
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but conservative, and align with the FHWA policy for Method 1. These target ranges provide approximate, 
rather than defined, limits to provide a means of weighting risk models.  

Another assumption of the research is that bridge components rated in CR 4 or less are screened from the 
analysis. Components in “poor” condition (i.e., CR ≤ 4) have a maximum interval of 24 months according 
to the NBIS. Risk analysis can be used to identify bridges in this condition which require inspection 
intervals of less than 24 months. However, the criteria for attributes in the risk models are generally aimed 
at prioritizing bridges in fair to good condition. Different criteria and perhaps different attributes are 
needed to prioritize bridges in CR 4 or lower in terms of risk. For example, most deck models rate a CS 
attribute as high for a deck with more than 5% CS 3 damage. To apply the attribute to bridge components 
in poor condition the criteria will need to be adjusted. Many CR 4 components may have more that 5% CS 
3 damage and rating them all as high may not produce any prioritization of the components. The criteria 
ranges will need to be increased to, for example, CS 3 greater than 15% is high relative to other CR 4 
components. A separate risk analysis with suitable criteria for components in poor condition is necessary 
to estimate a rational reduced inspection interval.   
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Chapter 2.  
Back-Casting Results 

This section of the report presents results from the back-casting using a population of 60 sample bridges. 
Back-casting was envisioned as a process of reviewing historical bridge records such as inspection results 
to determine if the risk assessment produced suitable inspection intervals that captured the deterioration 
of bridge components. Through the course of the research, it was recognized that the analysis of risk 
model results for individual bridge components was necessary to analyze the effectiveness of the models 
and improve results. The following sections summarize the back-casting and the results that were 
obtained. Much of the data analysis is focused on the assessment of individual components and the 
damage modes that control the inspection interval for a bridge.  

2.1. Example Risk Model 
The back-casting was completed using the risk models developed by the individual RAPs in participating 
states. The models were developed based on input from the RAPs obtained through expert elicitation to 
determine the most likely damage modes for bridges of a particular family, e.g., bridges with steel 
superstructures. The expert elicitation consisted of presenting the RAP members with a scenario for a 
given component and surveying RAP members anonymously to identify the likely damage modes that 
could have caused that component to be rated in CR 3, Serious Condition. Results of the anonymous 
survey were presented on a white board and the primary damage modes identified through consensus of 
the panel. This process of surveying experts anonymously followed by consensus forming is referred to as 
a Delphi process, a common method for expert elicitation.  

The RAP was then surveyed to elicit attributes that affect the likelihood of a specific damage mode 
developing and resulting in a serious condition. The attributes were ranked according to their impact on 
the likelihood of a certain damage mode occurring and causing serious damage. For example, for the 
damage mode of delamination and spalling in a bridge deck, attributes that contribute to the underlying 
deterioration mechanism of corrosion usually include the level of corrosion protection and the rate of 
deicing chemical application, and these attributes are assessed to have a high impact on the likelihood of 
serious damage developing. An attribute that has a smaller impact on the likelihood such as the flexibility 
of the superstructure, which may cause an increased rate of deterioration but has a smaller impact as 
compared with corrosion protection level or the rate of deicing chemical application, is ranked as 
moderate. This process prioritizes the attributes that contribute to deterioration or damage for a 
particular damage mode using a qualitative rank of high, moderate, or low. The ranking of the attribute is 
used to determine the initial weight of the attribute on a 20-point scale (high = 20 points, moderate = 15 
points, low = 10 points). For each attribute, criteria are developed by the RAP to determine how to rate 
the attribute, again using a qualitative scale of very high, high, moderate, or low. For example, the 
attribute of ADT might have criteria that high is greater than 30,000 vehicle per day, moderate is 10,000 
to 29,999, and low is less than 10,000. The combination of attributes, attribute ranks, and criteria form a 
risk model for assessing the relative likelihood of a given damage mode causing the component to 
deteriorate to a serious condition in the next 72-month period.  

Table 2.1 shows an example risk model for a reinforced concrete (R/C) bridge deck. The table includes a 
code used to describe the attribute, such as C.1, C.2, etc. which identifies the type of attribute (C = 
condition attribute, L = loading attribute, or D = design attribute), the name of the attribute, and the rank 
for that attribute identified by the RAP. A complete listing of attributes and codes is included in Appendix 
A for reference. The criteria for rating an attribute as very high, high, moderate, or low are also shown in 
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Table 2.1. As shown in the table, most attribute criteria include three levels of high, moderate, or low. The 
only attribute with four levels of criteria is Attribute D.29, Corrosion Protection Level. This attribute was 
developed in the research to summarize different attributes, such as the concrete cover, reinforcing steel 
coating, overlays, sealers, etc. that provide corrosion protection, into a single attribute. The criterion for 
CP 1 is that the element has one layer protection, for example, epoxy-coated rebar (ECR) with low cover. 
Normal concrete cover and ECR is defined as CP 2, and ECR, normal cover and an overlay is described as 
CP 3. If the element was constructed with ECR, normal cover, an overlay, and that overlay was sealed on 
a regular basis, the corrosion protection level will be CP 4.  

Risk models were developed for different damage modes for the bridge families as defined by the 
superstructure material, either steel or PSC concrete. The risk models developed by the RAPs were applied 
to 10 sample bridges from each state. Methods of calibrating the scoring of the risk models were also 
developed during the research. 

Table 2.1. Example risk model for a R/C deck showing the attribute, attribute rank, and criteria for 
scoring the attribute. 

Code Attribute Rank Criteria Rating 

C.1 Current Condition Rating High 
CR 5 
CR 6 

CR ≥ 7 

High 
Moderate 

Low 

C.2 Element Condition State High 
CS 3 ≥ 5% or CS 2 ≥ 20% 

1%≤ CS3 < 5% or 10% ≤ CS2 < 20% 
CS 3 < 1% or CS 2 < 10% 

High 
Moderate 

Low 

C.4 Joint Condition Moderate 
DE 2360 ≥ 20% CS 3 

DE 2360 1% ≤ CS 3/CS 4 < 20% 
DE 2360 CS 1 or CS 2, no CS 3 

High 
Moderate 

Low 

C.13 Efflorescence/Staining Low 

DE 1120: CS 3 ≥ 20% or CS 2 ≥ 
20% 

DE 1120: 1% ≤ CS 3 < 20% or 5% ≤ 
CS 2 < 20%, 

DE 1120: CS 3 < 1% or CS 2 < 5% 

High 

Moderate 

Low 

L.1A Average Daily Truck Traffic 
(ADTT) Moderate 

ADTT ≥ 5000 or ADT ≥ 16,000 
1000 ≤ ADTT < 5000 or 7500 ≤ 

ADT < 16000 
ADTT < 1000 or ADT < 7500 

High 
Moderate 

Low 

L.5 Rate of De-icing Chemical 
application Low 

Interstate / NHS or ADT ≥ 16,000 
ADT between 7500 & 16,000 

Local, Low ADT ≤ 7500 

High 
Moderate 

Low 

D.29/ 
C.30 Corrosion Protection Level Moderate 

CP 1 
CP 2 
CP 3 
CP 4 

Very High 
High 

Moderate 
Low 

2.2. Back-Casting Bridge Population  
The bridges used for back-casting were selected randomly from each state’s bridge population according 
to the material of focus for that state. The RAPs considered PSC and steel superstructures, with four states 
focused on steel bridges and two analyzing PSC bridges as shown in Table 2.2. Ten bridges were selected 
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from each state. The bridges were generally selected at random with two provisions. First, the bridges 
selected for a particular state were from a certain family of bridges, meaning the bridges had 
superstructures of a certain material type, either PSC or steel. The bridge family selected for each state 
matched the risk models developed by the RAPs for that state. Second, bridges were selected to provide 
geographic distribution across a state. For example, Figure 2.1 shows the geographic distribution of the 
PSC bridges assessed in the state of Washington.  

Table 2.2. Table showing the family of bridges studied in each state.  

State Bridge Family  State Bridge Family  
Connecticut Steel  Missouri  Steel  

Idaho PSC Washington  PSC 
Illinois  Steel  Wisconsin Steel 

The rationale for randomly selected bridges was to implement the risk models across a cross-section of 
the bridge population as compared to, for example, only selecting bridges in good condition. It was hoped 
that such a distribution of bridges could provide insight into the effectiveness of the models for 
representing the bridge inventory overall and gain insight into how to weight the individual attributes. 
Additionally, many of the attributes that were identified by the RAPs were likely to be rated as low for 
bridges in good condition, so there would be little opportunity to analyze if these attributes were effective 
in analyzing the likelihood of deterioration developing to a serious condition in the next 72 months. Finally, 
the randomly selected bridges can be used to assess if the risk models were durable across a typical bridge 
inventory in terms of being applicable to all bridges, regardless of the CR for the bridge. Since the risk 
models assess the relative risk, not the absolute or quantitative risk, bridges of different conditions, ages, 
and loading were needed to analyze the effectiveness of the models and develop a methodology for 
weighting the attributes.  

 
Figure 2.1. Geographic distribution of sample bridges in Washington.  

Under the provision of the updated NBIS only bridges in “good” condition are eligible for intervals of 72 
months. However, at the time the study was initiated, the NBIS had not yet been finalized, and this 
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limitation was not known. The randomly selected bridges provided a “sample” population of bridges to 
assess the RAP models and their effectiveness in providing a suitable risk profile of bridges that could be 
used for inspection planning.  

The bridge material types included 40 steel bridges and 20 PSC bridges. One of the steel bridges had PSC 
approach spans and both the steel and PSC members were analyzed. The distribution of different material 
types is shown in Figure 2.2. 

  
Figure 2.2. Distribution of sample bridge superstructure materials.  

Figure 2.3 shows the distribution of the ages of the sample bridges in Figure 2.3A and the ADT 
characteristics in Figure 2.3B. The average age of the sample bridges in 2020 was 48 years (σ = 17 years), 
with a minimum of 14 years and a maximum of 88 years.  

There was a broad distribution of average daily traffic (ADT) and age of the randomly selected sample 
bridges. The average ADT was 11,537 vehicles per day (σ = 21,945) with a minimum of 12 vehicles/day 
and a maximum of 136,800 vehicles per day.  

The condition ratings (CR) of the sample bridge components of deck, superstructure, and substructure 
varied from a low of CR 2 to a maximum of CR 9. The average CR for the sample bridge population was CR 
6 (σ = 1). Figure 2.4 shows the frequency plot of the CRs for the sample bridge population for the deck, 
superstructure, and substructure bridge components based on 2020 National Bridge Inventory (NBI) data. 
It should be noted that most of the sample bridges had CR that changed over the course of the back-
casting period, including bridges that had renovations and repairs.  

There were 13 bridges that had a CR in 2020 of at least CR 7 for all three components. Eight of the bridges 
included in the random selection had a scour CR of 5 or less, indicating these bridges may not qualify for 
an extended inspection interval. However, the scour ratings were not considered in the analysis because 
the RAP models do not address scour. The sample population also included five bridges that had a 
component rated in CR 4 or lower at some time during the back-casting period.  
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Figure 2.3. Plots showing age of sample bridges (A) and ADT (B). 

 
Figure 2.4. Condition ratings for the deck, superstructure, and substructure components of the sample 
bridges.  
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2.2.1. Basic Back-Casting Procedures  
The initial risk models developed by the RAP were used to perform back-casting on ten bridges from each 
state. Inspection reports for the sample bridges were collected over time intervals ranging as far back as 
1996. Inspection report records were reviewed with an emphasis on utilizing inspection notes to 
determine or infer how the criteria of an individual attribute should be rated for a particular bridge. 
Consideration was given to attributes that were time dependent such as condition attributes, and those 
that were typically fixed over the analysis interval such as design attributes. For example, Table 2.3 shows 
the time-dependent attributes for the superstructure and deck components for a steel bridge analyzed 
through back-casting. Attribute criteria from the risk model were assessed for each inspection year over 
the time interval of 2004 – 2021. The attributes shown in the table changed during that back-casting time 
interval. For example, the CR decreased, and the coating condition was deteriorating over time, according 
to damage reported in the inspection reports. The deck condition dropped from 7 to 4 during the 
inspection interval.  

Table 2.3. Example listing of time-dependent attributes for a steel bridge. 

 
Design attributes, which typically do not change over the course of time, were also recorded for each year. 
In some cases, certain design characteristics changed over the course of the assessment interval. For 
example, a bare R/C deck may have an overlay installed during its service life such that the corrosion 
protection level increases.  

A spreadsheet program was used to document the results of inspection report reviews in a systematic 
manner and allow for the risk models and attributes to be analyzed for a particular group of sample 
bridges. The spreadsheet program stored data on the attributes and criteria for each risk model and 
sample bridge. The program calculated the OF value from the risk model based on the attributes for each 
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component. In this way, the analysis from the inspection report could be stored and used for sensitivity 
studies on the effect of weighting attributes to improve the quality of the risk models. The resulting 
inspection interval was determined by considering the CF category of moderate or high. 

The back-casting results presented in Figure 2.5 show the CRs for the components of the deck, 
superstructure, and substructure from NBI data in Figure 2.5A. The inspection interval based on a CF of 
moderate is superimposed on the figure to illustrate how the inspection interval changed over the course 
of time. Figure 2.5B shows the results from applying the risk models for the superstructure, substructure, 
and deck damage modes in each inspection year to determine the OF value. The OF value is shown on the 
ordinate. For this bridge, the steel superstructure had coating damage, high ADT, leaking joints, deck 
drainage issues, and the superstructure was subjected to overspray from a roadway below. As a result, 
the OF values were relatively high even when the bridge was assessed as CR 7 for the steel superstructure 
damage mode of corrosion damage / section loss. 

The deck of the bridge deteriorated over the course of the research, resulting in increased OF values as 
shown in the figure. The OF also increased for the damage mode of impact because the reported vertical 
clearance changed from 15.25 ft to 14.78 ft. The criterion for the attribute of vertical clearance was rated 
high when the vertical clearance was less than 15 ft, and moderate when the vertical clearance was 15 to 
17 ft., and as a result, the small change in vertical clearance changed the OF value.  

2.2.1.1. Challenges With Back-Casting  

The back-casting proved to be very challenging for several reasons. The two primary issues experienced 
were that the notes and features of older bridge reports did not provide data consistently over time. For 
example, damage reported in one bridge inspection may not be present in the next inspection report such 
that it was difficult to track the progression of damage. This was particularly problematic for bridges that 
did not have element-level reports. In some cases, inspection policies were evolving over the course of 
the back-casting time interval, resulting in inconsistent inspection data. For example, element-level 
inspection data became available or reported elements changed because a state policy changed regarding 
data requirements for inspection reporting. In addition, some attribute qualities identified by the RAPs 
were not present in the bridge inspection records, and therefore, required some assumptions or 
inferences to rate the attributes. The inspection reports sometimes included very little information 
regarding why a CR changed from one inspection to another. Older bridges with element-level data 
frequently included inspection notes that did not align with the CS state. For example, a bridge deck may 
have been described as having widespread cracking or spalling, but 100% of the deck was recorded as in 
CS 1. Additionally, because the review of the inspection reports often involved assumptions and 
inferences regarding the appropriate ratings for attribute criteria, the reviews were not repeatable 
between different reviewers.  

2.2.2. Weighted Sum Model  
The OF is calculated as a weighted sum model where the initial weights for the model were developed 
through expert elicitation process with the RAP (Washer, Connor et al. 2014). The initial value weights for 
a given attribute were set by simply ranking a given attribute as high, moderate, or low in terms of its 
impact on the POF. Attributes ranked as high are expected to have a significant impact or influence of the 
likelihood and an attribute ranked as low are expected have a minor impact. The rankings are subjective 
but provide a starting point for the weighted sum model, which can be adjusted as necessary to better 
reflect the actual performance of a family of bridges of similar materials and design and meet target 
ranges. A method for weighting the attributes was developed through the research and will be described 
later in the report. 
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Figure 2.5. Back-casting results for a sample bridge showing the NBI CR and inspection interval (A) and 

the OF values for each year (B). 

Most attributes identified by the RAPs were ranked as high indicating a significant impact on the POF. 
Very few attributes were ranked as low by the RAPs. The attributes identified by the RAPs are those that 
the individual members of the RAP considered most important, so it is normal that many of the attributes 
were ranked as moderate or high. Attributes ranked high are assigned a maximum value of 20 points, 
attributes ranked moderate are assigned a maximum value of 15 points, and attributes ranked low are 
assigned a maximum value of 10 points.  
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The criteria for each attribute are used to determine the actual score for an attribute when applied to a 
bridge component. Three criteria are typically developed to determine if the attribute should be rated 
high, moderate, and low. If an attribute is rated as high based on its criteria, then the attribute is assigned 
100% of its weight. If the attribute is rated as moderate based on its criteria, then the attribute is assigned 
50% of its weight, and if the attribute is rated as low, it is assigned 0 points. Attributes can also be 
described with four levels of very high, high, moderate, and low, with assigned point of 100%, 50%, 25% 
and 0%, respectively. Different point distributions can be used if needed to express the impact of the 
attribute’s qualities on the likelihood of damage developing.  

The weighted sum model used for scoring individual damage modes in the initial research is shown by the 
equation:  

 
Where: 
 Ai = Original score for individual attribute based on its rank 
Ai, max = maximum score for an individual attribute 

Equation 2.1. Unweighted Occurrence Factor equation.  

This equation uses the weights for each attribute according to the rank provided by the RAP and the result 
of assessing that attribute’s criteria. The scores for each individual attribute are summed to produce the 
numerator and the maximum scores for each attribute are summed to form the denominator. This is 
intended to be a simple and rapid process to apply.  

Different approaches to weighting attributes were studied to better match the outcome of the risk models 
with the target ranges when applied to actual bridges and bridge records. The individual attributes were 
weighted using the equation:  

 
 

Where: 

wi = weight assigned for a given attribute Ai 

Equation 2.2. Weighted Occurrence Factor equation.  

This equation allows for the attributes initially weighted by the RAP to have their overall weight in the 
model increased. For example, the score of the CR attribute of a deck was typically 20 points. A multiplier 
of 1.50 will increase the high score to 30, moderate score to 15, and low remains zero. The maximum 
score for the model is also increased according to Equation 2.2. In this way increasing the weight of an 
individual attribute reduces the relative weight of all other attributes in the model, since the denominator 
is also increased. 

The research did not find suitable existing procedures for adjusting the weights of individual attributes in 
a weighted sum model. Several methods were explored and found to be impractical or not related to 
engineering decision-making. For example, a method for determining the weights of individual attributes 
based on its statistical properties provided weights that primarily showed which attributes were most 
likely to vary over the course of time rather than any engineering rationale. Most of the approaches 
described in the academic literature for weighting attributes in a weighted sum model did not adequately 
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represent engineering decision-making when implemented on the risk models for bridge components. For 
this reason, new methods of analyzing risk models for bridges were developed and tested to find suitable 
weights for attributes.  

2.3. Overall Results  
This section of the report describes the preliminary results from the original back-casting using the RAP 
models. Much of the data is analyzed on a component basis to assess the effectiveness of the risk models 
and provide general results that show how the RAP models performed when applied to actual bridge 
components. An analysis of the risk scores for all the bridge components in the study is reported.  

Some of the original risk models developed from RAP meetings did not include the CR of a component 
explicitly as an attribute. The RAP meetings focused on attributes and damage modes that indicated an 
increased relative risk such as corrosion damage, rate of deicing chemical application, joint condition, etc. 
The damage modes that were identified by the RAP would affect the CR even if the CR were not explicitly 
mentioned in all cases. When the sample bridges were scored with risk models that did not include the 
CR explicitly as a separate attribute, it was found from initial back-casting results that the risk scores often 
did not align with the target ranges for individual sample bridges. For example, a CR 4 component would 
have a lower risk score than a CR 7 component because bridge condition was not adequately represented 
in the risk model. These initial results were not very informative and are not included here. Additionally, 
the risk models without CR attributes did not reflect the rational assessment that most CR 5 components 
would be more likely to deteriorate to a CR 3 in the next 72 months than a CR 7 component based simply 
on the fact that the component is already in CR 5. While it may be possible for a CR 7 bridge to deteriorate 
more rapidly, this would not be a common or expected occurrence. The CR was implemented as an 
attribute for damage modes that would affect CR, such as corrosion-related damage modes. Damage 
modes for which the risk is unrelated to the component condition such as the impact damage did not have 
the CR attribute included because the likelihood of a vehicle impacting a bridge is unrelated to its 
condition.  

Figure 2.6 shows the raw risk scores for corrosion-related damage modes for the deck, superstructure, 
and substructure based on risk models that include the CR for the subject component and the CS for the 
element under consideration. The ordinate on the left shows the risk score calculated using Equation 2.1 
and the abscissa shows CR for each component. The OF categories are shown next to the ordinate on the 
right. The data are shown for damage modes of deck delamination and spalling (R/C deck delam. and 
spalling), steel superstructure corrosion damage (Stl. ss. corrosion), substructure delamination and 
spalling (R/C sub. delam. and spalling), and delamination and spalling of a PSC superstructure member 
(PSC ss. delam. and spalling). The data points are slightly offset from the associated CR for clarity, and a 
trend line in the figure shows the linear regression for all data points combined. These data illustrate that 
the risk models produced risk scores that trended toward larger values for components with lower CR. 
The average value for components with CR 5 was 2.54, in the moderate range. The average value for 
components with CR ≥ 7 was found to be 1.11, in the low range for the OF. However, Figure 2.6 shows 
that, in some cases, components with CR ≥ 7 had risk scores greater than components with CR ≤ 5. Most 
of the components with CR ≥ 7 were rated in the low or moderate range. These data indicate that the 
design and loading attributes in the models have weights that are too high as compared with condition 
attributes. As a result, the models did not produce results that aligned with the target ranges and provided 
suitable contrast between the calculated OF for components in CR ≥ 7 and components in CR 5 or lower. 
The assigned values in the risk model need to be adjusted to produce results consistent with the target 
values and engineering judgement. Several different approaches were pursued to properly weight the 
attributes in the models to better align results with the target ranges.  



26 

Figure 2.6. Raw OF scores for corrosion-related damage modes for sample bridges.  
 

2.3.1. Assessment of Model Weighting 
Based on the results from the initial back-casting process, it was clear that the original risk models were 
not adequately representing the increased risk as the CR decreases. Sensitivity studies were conducted to 
assess the impact of different approaches to weighting the attributes on the OF scoring. The objective of 
the studies was to determine if increasing the weights of certain attributes improves the quality of the 
risk model when compared with the target ranges and provide insight into how to calibrate the models 
for implementation.  

First, a study was conducted using a procedure that ranked individual attributes based on statistical 
analysis to assign individual weights. This approach was ineffective and is not reported here. A second 
study was completed in which attribute weights were adjusted by two methods. The weights for groups 
of attributes were increased using Equation 2.2, in which the attribute value was increased and the total 
number of points in the model was also increased. Additionally, individual attributes of the component 
CR and the element CS, and a group of condition-related attributes, were weighted without increasing the 
total value of the model. The following section describes the sensitivity study process and results.  

2.3.1.1. Sensitivity Study of Attribute Weights 

Sensitivity studies were conducted to determine how the risk models developed by the RAPs should be 
weighted to improve the quality of the models when compared with the target ranges. The risk models 
include attributes that are categorized in groups as condition, loading, or design attributes. Condition 
attributes are expected to change over time as a component deteriorates, while design attributes are not 
expected to change over time. Loading attributes may change over time but are expected to remain 
relatively constant. For example, ADT is a loading attribute that may change if traffic volumes change 
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significantly over time. The sensitivity study explored if weighting the groups of attributes or weighting 
individual condition attributes of CR and CS is more effective for improving the overall quality of the 
models.  

Different risk models include different combinations of attributes from the condition, design, or loading 
groups. For example, Figure 2.7 shows the proportion of the attribute groups for a given set of risk models 
assessing corrosion-related damage in the superstructure, substructure, and deck. As shown in the figure, 
the models for corrosion-related damage modes derive ≈50% or more of their total scoring from 
condition-related attributes. The models include both the CR and CS attributes as well as other condition 
attributes such as joint condition, efflorescence, or poor deck drainage. In the sensitivity study, the 
weights of the condition, loading, or design attributes were modified to assess the outcome as compared 
with target ranges.  

 
Figure 2.7. Graph showing relative proportions of condition, design, and loading attributes. 

An example of the attribute groupings for a bridge deck are shown in Table 2.4. This table shows the 
attributes that were included in the design, loading, and condition attribute groups. Two attributes were 
split between different groups. Poor deck drainage could be a design attribute if the bridge was designed 
with an ineffective drainage system such as deck edge-drains. On the other hand, an initially effective 
deck drainage system may become clogged or otherwise damaged during service life and become an 
ineffective drainage system over time. For CP level, a bridge may be constructed with ECR or with an 
integral overlay making the CP level a design attribute. An overlay or sealing practice may be initiated 
during the service life of a deck or other component. In this way, these attributes may be reasonably 
expected to change over time in certain cases, particularly the CP level, since sealing and overlays are 
increasingly common to provide additional corrosion protection. The sensitivity study examined the OF 
over the time-period of the back-casting process (2004 – 2021), during which these attributes changed 
for certain bridges. In fact, several instances of overlays being installed, or deck sealing, occurred during 
the back-casting period. For this reason, the attributes were split between design and condition to reflect 
that the scoring for either attribute may change over time, similar to a condition attribute, or may remain 
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constant, similar to a design attribute. Deck drainage was split 50%-50% between design and condition, 
and the CP level was split 75% condition and 25% design.  

The maximum score for the attributes in each group was increased according to Equation 2.2. Weighting 
a certain group of attributes reduces the relative weights of other attributes in the model as shown in 
Figure 2.8. The figure shows the weight on the abscissa and the percentage of the risk model on the 
ordinate to illustrate the trend of applying weights to a risk model for decks. The total number of points 
in the model is also shown in Figure 2.8 with the markers and line referenced to the ordinate on the right 
side of the figure. The figure shows the effect of increasing the weight of the condition attributes on the 
model. The risk model used to produce the figure was a 12-attribute risk model that initially had 210 total 
points in the model. As shown in the figure, increasing the relative weight (wi) of a group of attributes 
decreases the relative weights of other attribute groups. The same process was completed for design and 
loading groups of attributes separately to gain insight into how the weighting affected the risk scores for 
the sample bridges. This weighting of the attribute groups according to Equation 2.2 was referred to as 
the attribute multiplier (AM) approach.  

Table 2.4. Example listing of attributes in condition, loading, and design groups. 

Code Attribute 

 Condition Attributes 

C.1 Current CR 
C.2 Current Element CS 

C.13 Efflorescence/Staining 
D.29/C.30 Corrosion Protection Level (75%) 

C.27 Rate of Deterioration 
D.4/C.7 Poor Deck Drainage and Ponding (50%) 

 Loading Attributes 
L.1 Average Daily Traffic 

L.5 Rate of De-icing Chemical Application 
 Design Attributes 

D.24 Superstructure Flexibility 
D.8 Concrete Mix Design 

D.29/C.30 Corrosion Protection Level (25%) 
D.4/C.7 Poor Deck Drainage and Ponding (50%) 

The effectiveness of weighting condition-related attributes without increasing the total number of points 
in the model was also studied. This study examined weighting only the current component CR (C.1) and 
the current element CS (C.2) or weighting the entire group of condition-related attributes. This was 
referred to the points-added (PA) approach because points were added to the numerator, but not the 
denominator as shown in Equation 2.3: 

 
 

Equation 2.3. Equation for point PA method. 
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The PA sensitivity study focused on increasing the weight of the condition attributes. Condition rating and 
CS attributes were multiplied by 1.50 without increasing the total number of points in the model. 
Additionally, all condition attributes were multiplied by 1.50 while keeping the total score the same. 
Essentially, this produces “add-on” points to specific attributes (or groups of attributes) in the model to 
present a larger impact on the model score. Using this scoring process, it is possible for a risk model score 
to exceed 100%, i.e., the OF could be greater than 4, which is undesirable in terms of having a rational 
model. 

 
Figure 2.8. Effect of weighting condition attributes using the AM method. 

2.3.1.2. Process and Results 

Components and damage modes analyzed included delamination and spalling of R/C decks, PSC 
superstructures, and R/C substructures, and corrosion / section loss and fatigue in steel superstructure 
members. These models formed a representative group of components and damage modes for the 
analysis that was common between different RAPs. The process consisted of recording the original 
unweighted risk model score and progressively increasing the weights of groups of attributes. The OF was 
calculated using the Equation 2.2. The weights were applied by multiplying a particular group of attributes 
by wi = 1.25, 1.5, 1.75, and 2 for the AM study. For the PA study, the OF was calculated by Equation 2.3. 
The weights were applied by multiplying the condition-related attributes group by wi = 1.5. The PA study 
also included weighting the CR and CS (C.1 and C.2) multiplied by wi = 1.5.  

The analysis was conducted on the 60 sample bridges over the back-casting period. Each inspection year 
was analyzed with the AM and PA approaches. The target values shown in Figure 1.3 were used to analyze 
the effect of increased weights. The expected OF for a bridge in good condition (CR ≥ 7) was in the remote 
to low range, meaning the risk score was nominally between 0 and 2 with a margin of error of 0.1 (i.e., 
between 0 and 2.1). For bridge with a CR 6, the values of the OF were expected to fall in the low to 
moderate range with a 0.1 margin of error (i.e., score between 0.9 and 3.1), and for bridge with CR ≤ 5, 
results were expected to fall into the range of Moderate to High (i.e., score between 1.9 and 4). Although 
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the expected outcomes of the risk models will naturally vary for different components in the same CR, the 
target ranges were applied as ranges over which the results are expected to fall. Results were analyzed by 
determining the number of times the risk model did not match the target ranges; this analysis was 
completed over the back-casting period of 2004 – 2021.  

Table 2.5 summarizes the results of the sensitivity study. The table shows the approach (AM or PA) that 
yielded the greatest number of results that fell within the target ranges over the back-casing period for 
each of the risk models. The percentages in the tables represent the percentage of results that fell outside 
the defined thresholds. For example, a deck rated in CR 5 has a risk score (i.e., OF) of 1.67 in 2012, the risk 
score does not match the target values. In 2016, the risk score increased to 2.2, so the risk score is within 
the target range. Each risk model was assessed for each inspection year from 2004 through 2021.  

Table 2.5. Results of sensitivity study of weighting for attributes by component. 

Component Original 
Scoring (%) Best scoring (%) Best Scoring Method 

R/C Deck, delam. and spalling 7.0 2.0 AM, Condition 1.25 
R/C Deck, delam. and spalling 21 13 PA, Condition 1.50 
R/C Deck, delam. and spalling 2.0 0 AM, Design 1.25 
R/C Deck, delam. and spalling 5.6 0 PA CR & CS 1.50 
R/C Deck, delam. and spalling 14 4.0 PA, CR & CS 1.50 
R/C Deck, delam. and spalling 0 0 Original 

Stl. SS., corrosion 15 11 AM, Condition 2.00 
Stl. SS., corrosion 1.1 1.1 Original 
Stl. SS., corrosion 10 3.0 AM Design 1.75 
Stl. SS., corrosion 17 12 AM, Condition 1.75 

Stl. SS., fatigue  0.63 0.63 Original 
Stl. SS., fatigue 8.2 1.5 AM, Condition 1.25 
Stl. SS., fatigue 18 8.9 AM, Design 1.25 
Stl. SS., fatigue 22 15 AM, Condition 1.25 

PSC SS, delam. and spalling 8.0 7.0 AM, Design 1.25 
PSC SS, delam. and spalling 1.0 1.0 Original 

R/C Sub. delam. and spalling 19 12 AM, Condition 1.50 
R/C Sub. delam. and spalling 10 2.0 PA, CR & CS 1.50 
R/C Sub. delam. and spalling 2.6 2.1 AM, Condition 1.25 
R/C Sub. delam. and spalling 2.0 0 AM Condition 2.00 
R/C Sub. delam. and spalling 17 13 AM, Condition 1.75 
R/C Sub. delam. and spalling 1.0 0 PA, CR & CS 1.50 

The results of the study showed that the original risk models produced results that were outside the target 
ranges an average of 9% (σ = 7.5%) of the inspection cycles. When adjusted by weighting, the average was 
reduced to 5% (σ = 5.4%). These data indicate that the original models met the target ranges in the 
majority of inspection cycles during the back-casting period. This was improved when one of the weighting 
processes was implemented, although no single approach worked in all cases.  

Considering the different processes used for weighting the attributes, the results of this sensitivity study 
indicated that increasing the weights of the condition-related attributes improved the quality of the risk 
models in 14 of the 22 cases shown in Table 2.5, with five cases of PA providing the best results and nine 
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cases of AM providing the best results. The original, unweighted model provided the best results in 4 of 
the cases.  

It was also noted that the largest variations from the target values were for the damage mode of fatigue 
cracking for steel superstructures. The likelihood of fatigue cracking is theoretically not related to the CR 
of the superstructure. However, CRs generally decline as a bridge ages and corrosion damage increases. 
The number of stress cycles the component is exposed to increases as the bridge ages, and corrosion 
damage can act as initiation points for cracking. As a result, there is a relationship between the likelihood 
of fatigue cracking and the condition of the bridge. However, the target ranges did not align well with 
results of the fatigue risk models. 

The conclusions from this sensitivity study were as follows:  
1. Increasing the weights of the condition-related attributes, either using the AM or PA method, 

improved the quality of the risk models when compared with the target ranges. While not true 
for every case, the trend indicated that the approach most likely to improve the quality of the 
models was to weight the CR and CS in the models.  

2. The PA method was not sufficiently more effective as compared with the AM method to justify 
its use moving forward, considering that the approach can produce results that do not conform 
to the overall model of rating risk for components on a scale of 0 to 4.  

3. Risk models for fatigue cracking produced the largest variation from the target ranges.  
From the sensitivity study, it was also concluded that a more systematic method of weighting the 
attributes was needed to effectively calibrate the risk model to meet the target ranges. The population of 
sample bridges produced different results for the different weighting scenarios studied. The number of 
condition, loading, and design attributes varies for different models, and the sample of 60 bridges each 
had unique characteristics and deterioration patterns. Additionally, the historical data obtained from 
inspection reports was cumbersome to work with and difficult to repeat. While this sensitivity study 
produced some insight into the behavior of the risk models as compared with actual bridges, it is not 
practical to apply this method to calibrate the models generally. A more effective methodology was 
needed and the MC simulations that will be described provide a more durable and implementable 
approach.  

Based on these results, additional studies were conducted with the CR and CS attributes weighted by a 
factor of 2 as described below.  

2.3.1.3. CR and CS Weighting  

The risk models were implemented with increased weights for the primary condition attributes based on 
the results of the initial analysis of the back-casting results and the sensitivity study. The models were 
weighted by increasing the value of the CR and CS attributes (C.1 and C.2) by a factor of 2 (wi = 2). 
Increasing the weights of these attributes decreases the weights of all other attributes as previously 
discussed and shown in Equation 2.2. This produced results for weighted models that could be compared 
with results for the unweighted models.  

The results for the primary corrosion-related unweighted risk models were previously shown in Figure 2.6. 
As shown in that figure, there was a general trend that lower CR components have increased values of. 
However, there are cases where CR ≥ 7 components have OF values that are greater than some CR 5 
components. Many CR ≥ 7 components exceeded the value of 1 for the OF and were rated with OF = low. 
If the CF is high and the OF is low, the inspection interval will be 48 months, based on the proposed risk 
matrix. Therefore, it was desirable to increase the contrast between components in CR ≥ 7, which 
practically would be expected to have remote likelihood in most cases based on engineering judgement, 
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and components in CR 5, which would not qualify for extended intervals using Method 1 according to the 
current NBIS requirements. Additionally, the sensitivity study described in the previous section showed 
that weighting the risk models by increasing the relative value of the condition-related attributes 
improved the quality of the risk models when compared with the target ranges. To provide additional 
contrast in the risk values that would better align with expected values, the results from the back-casting 
were modified by multiplying the CR and CS by 2 using Equation 2.2.  

Weighting the models in this way has the effect of reducing the risk values for components with CR ≥ 7 
when attribute C.2, Element Condition State, is also rated as low. The risk values are reduced because the 
attribute C.1, Current Condition Rating, is rated a low for a component in CR ≥ 7, and therefore, scores 0 
points regardless of what weighting factors are applied to the models. The weighted attribute’s maximum 
score is added to the denominator, resulting in a reduced risk score overall. For components with CR 6 
and lower, points are added to both the numerator and the denominator, resulting in an increased risk 
score. Additionally, it is much more likely for a component rated in CR 6 or CR 5 to have element CSs that 
rate as either moderate or high for attribute C.2 as compared with a component in CR ≥ 7. As a result, the 
risk scores are reduced for components in good condition and increased for components in fair condition 
or poor condition.  

The overall results of using the weighted risks models are shown Figure 2.9. The figure includes a linear 
regression line based on all the data shown. It can be observed that the slope of the regression line is 
increased as compared with the regression line shown in Figure 2.6. Notable in the figure is that all the 
components in CR ≥ 7 now score in the remote or low range. Components in CR 6 are primarily in the low 
or moderate range. Components in CR ≤ 5 generally score in the moderate to high range. These results 
illustrate greater contrast in the risk scores for components with different CRs, with components in good 
condition having lower risk scores and components in fair and poor condition having increased risk scores 
as compared with the unweighted risk models. The results from the weighted models align more closely 
with the target ranges described earlier.  

The weighting of the CR and CS attributes has a relatively small overall effect on the average value of the 
risk score for components in different CRs as shown in Figure 2.10. This figure depicts the average of the 
risk scores calculated from the risk models. The average risk scores for the unweighted and weighted 
models are shown. Error bars show the standard deviation of the results. The figure illustrates that the 
average OF value does not change by a large amount, but the change is significant because the average 
for CR ≥ 7 components drops from 1.11, in the low range, to 0.9, in the remote range. When compared 
with the proposed risk matrix shown in Figure 1.5B, components in CR ≥ 7 with a remote OF will qualify 
for extended intervals even if the CF was high. As discussed earlier in the report, the target range for 
components rated in CR ≥ 7 is in the low to remote range, based on the rationale that bridges in good 
condition rarely, if ever, deteriorate to a CR of 3 in a 72-month interval.  

Based on these data from the sensitivity studies, the back-casting results were analyzed for scenarios 
where the CR and CS are weighted by a factor of 2 and compared with the original, unweighted risk 
models. This data was used to estimate the resulting inspection interval that would apply based on the 
risk scores. A method for analyzing individual weights and calibrating individual risk models was also 
developed that allows a bridge owner to predict the outcome of applying the risk model to their bridge 
inventory.  
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Figure 2.9. OF results for components of 60 sample bridges with weighted CR and CS.  

 
Figure 2.10. Bar chart showing the average OF for sample bridge components for weighted and 
unweighted models.  
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2.4. Risk-Based Intervals 
This section discusses the overall trends in the data formed from the back-casting process. The inspection 
intervals were determined for two different CF values, CF = 2, moderate, and CF = 3, high. The CF = 4, 
severe, was not included in the analysis because this CF generally applies to bridges that lack redundancy 
such as NSTMs. The CF factor of low has the same intervals as the CF of moderate except for bridge 
components with a high OF according to the risk matrix shown Figure 1.5. As shown in the back-casting 
data, an OF high typically occurs for bridge components with a CR of 5 or less. As a result, there is not 
relevant information contained in an analysis of a low CF.  

The inspection interval for a bridge is controlled by the highest risk score for any component of the bridge. 
As such, the controlling component with the highest risk score was used to assess the sample bridges and 
determine the risk-based inspection interval.  

2.4.1. Inspection Intervals Based on Component Ratings 
This section shows results for applicable inspection intervals considering the risk scores for the controlling 
component and damage mode for each of the sample bridges. Results are presented with different CFs to 
illustrate potential outcome of the analysis in a general way considering that different owners may have 
somewhat different parameters for the CF. The CF of low (CF = 2), the CF of high (CF = 3) were used to 
determine the inspection intervals based on the unweighted and weighted risk scores using the risk matrix 
included in the NCHRP 782 report. In addition, the inspection intervals were determined with the 
proposed risk matrix, discussed earlier in the report, in which a component with a remote OF and the high 
CF is assigned an interval of 72 months. This scenario is listed as “CF 3P.” The results presented in this 
section consider the CR for components in the year 2020 as compared with the results from the risk 
analysis. Results for weighted and unweighted models are presented. The data was analyzed based on 
the controlling component risk score for each bridge. The NBIS requirement that only bridges in “good” 
condition are eligible for extended intervals of 72 months was not considered in the analysis. An analysis 
of the bridges in the sample set that had all three components rated as CR ≥ 7, i.e., bridges in good 
condition, is provided later in the report.  

The results showed a distribution of inspection intervals that were slightly different if the weighted models 
were used as compared with the unweighted model. Table 2.6 shows the overall results for the weighted 
and unweighted models. It was found that for the CF of low, 42% of the sample bridges could be assigned 
an inspection interval of 72 months. For CF = 3, there were no bridges in the sample population that 
qualified for a 72-month interval using the risk matrix from NCHRP 782. If the proposed risk matrix were 
used, 5% of the sample bridges could have an interval of 72 months.  

If the weighted models were used, there was a small difference in the number of bridges that could have 
a 72-month interval, increasing from 5% (3 bridges) to 8% (5 bridges) as shown in Table 2.6. The small 
increase in the number of bridges that have a 72-month interval does not seem that significant; however, 
the number of bridges in the sample population with all component CR ≥ 7 was relatively small, only 13 
of the 60 bridges. Additionally, for CF = 2, the percentage of bridges eligible for a 72-month interval goes 
down when the weighted model is used. This occurs because some of the components eligible for a 72-
month interval in the weighted model are controlled by components in CR 6. As a result, the risk score for 
these components is increased when the model is weighted resulting in a reduced inspection interval. It 
is notable that the percentage of bridges with a 24-month interval increases when the condition factors 
(CR and CS) are weighted as compared with the unweighted model. 
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Table 2.6. Inspection intervals determined from controlling damage mode for unweighted and 
weighted models. 

Consequence Factor 24 Months 
(%) 

48 Months 
(%) 

72 Months 
(%) 

CF 2, Unweighted 18 40 42 
CF 3, Unweighted 58 42 0 

CF 3P, Unweighted 58 37 5 
CF 2, Weighted 23 42 35 
CF 3, Weighted 65 35 0 
CF 3P Weighted 65 27 8 

Analyzing these results according to the CR of the bridge components provides some insight into how the 
weighted and unweighted models compare for the sample bridges. The bridges considered in this analysis 
were those that did not have an impact damage mode controlling the inspection interval. There were 11 
sample bridges that had the controlling damage mode of impact for either the superstructure or 
substructure. Components from the remaining 49 bridges were analyzed to assess the effect of weighting. 
The proposed risk matrix was used to determine the inspection interval based on the risk score and the 
resulting OF category. Figure 2.11 presents the results of the analysis showing the calculated inspection 
interval for the components of 49 sample bridges considered, based on the controlling component and 
damage mode for each bridge. The CF was assumed to be CF = 3P in the analysis. 

There was an increase in the number of components in good condition that could have a 72-month 
inspection interval when the weighted models were used as shown in Figure 2.11. Primarily, components 
that had been assigned a 48-month interval changed to 72-month interval when the model was weighted. 
The increased weight of the condition attributes of CR and CS results in a reduction in the risk score for 
these components, and consequently a change in the assigned interval. There was also a decrease in the 
number of CR 5 components that could be assigned an interval of 48 months, with those components 
typically changing from a 48-month interval to a 24-month interval. Additional analysis of those bridges 
with CR ≥ 7 for all components is shown in section 2.4.2.1.  

 
Figure 2.11. Inspection intervals determined from weighted and unweighted risk models with CF = 3P.  
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2.4.2. Damage Modes  
Data from the 60 sample bridges were analyzed to determine the predominant damage modes that 
controlled the inspection interval for a given bridge. The data presented here is for the weighted model, 
with CR and CS multiplied by a factor of 2, and other damage modes remaining the same weights as 
defined by the RAP. The results are shown in Figure 2.12 which presents two pie charts showing the 
proportion of bridges that controlled the inspection interval according to the different damage modes. 
The predominant damage modes for steel bridges (Figure 2.12A) were deck delamination and spalling and 
substructure delamination and spalling. A significant portion of the bridges (18%) were controlled by the 
likelihood of impact damage due to low vertical clearance of the bridges from the roadways below. It was 
notable that 13% of the bridges were controlled by the fatigue cracking damage mode, while only 10% of 
the bridges were controlled by superstructure corrosion damage, i.e., likelihood of section loss. For PSC 
bridges (Figure 2.12B), about 1/3 of the bridges were controlled by superstructure and substructure 
delamination and spalling. The deck delamination and spalling modes controlled another 25% of these 
bridges.  

 
Figure 2.12. Distribution of damage modes for sample bridges showing steel (A) and PSC (B) bridges.  
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It was notable that the analysis showed no single dominant damage mode for the randomly selected 
population of 60 bridges. In fact, the damage modes were fairly evenly distributed among the 
superstructure, substructure, and deck. There was a significant proportion of the bridges that had their 
inspection intervals based on the likelihood of impact damage due to either low clearance, in the case 
superstructure impact, or location close to the roadway, for substructure impact damage. Overall, almost 
20% of the bridges were controlled by either superstructure or substructure impact.  

The NBIS and associated FHWA guidance allows only bridges in good condition to be considered for 
intervals of up to 72 months for inspection. The 13 sample bridges that were in good condition in 2020 
were analyzed separately to assess those bridges that could be eligible for extended inspection intervals 
and the results are presented in the following section.  

2.4.2.1. Bridges in Good Condition 

There were 13 sample bridges that had a CR ≥ 7 for the components of superstructure, substructure, and 
deck. There were seven steel bridges and six PSC bridges in this group. Three of the bridges had controlling 
damage modes of superstructure or substructure impact. The most common controlling damage mode 
was PSC delamination and spalling, which controlled for three out of the six bridges with PSC 
superstructures. Overall, there was a fairly even and broad distribution of damage modes, with eight 
different damage modes controlling for sample bridges in good condition. This included R/C deck 
delamination and spalling, steel superstructure fatigue cracking, and superstructure impact with two 
bridges each, and steel superstructure corrosion, PSC superstructure cracking, R/C substructure 
delamination and spalling, and substructure impact with one bridge each.  

Bridges in good condition with a controlling risk score of impact damage were re-analyzed without 
considering the impact damage mode. The highest weighted risk score other than impact damage was 
used in the analysis. This resulted in the controlling damage mode being one of the condition-related 
damage modes such as delamination and spalling of a component. For example, it was assumed that one 
bridge was controlled by deck delamination and spalling, a second bridge was controlled by fatigue 
cracking, and the third bridge was controlled by substructure delamination and spalling.  

The resulting damage modes were proportioned as shown in Figure 2.13. The figure shows the proportion 
of bridges in good condition controlled by each damage mode. The data showed that the predominant 
damage modes were deck delamination and spalling, PSC superstructure delamination and spalling, and 
steel superstructure fatigue. Delamination and spalling of the substructure also played a significant role. 
Overall, the results demonstrated that among randomly selected bridges in good condition, there was a 
distribution of the controlling damage modes divided somewhat equally between the deck, 
superstructure, and substructure components.  

The percentage of bridges in good condition eligible for a 72-month inspection interval is shown in Table 
2.7. The results show that considering the proposed risk matrix, almost 50% of the sample bridges that 
are in good condition qualify for an extended inspection interval when the CF = high. If the CF were 
moderate (i.e., CF = 2), all the bridges in good condition would qualify for the extended interval.  

Table 2.7. Proportion of bridges in good condition eligible for 72-month inspection interval.  

Model CF 2 CF 3 CF 3P 
Unweighted 100% 0% 23% 

Weighted 100% 0% 46% 
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Figure 2.13. Distribution of controlling damage modes for CR ≥ 7 bridges without considering the impact 
damage mode.  

2.5. Statistical Analysis of Component Risk Scores 
The results from the back-casting process were analyzed statistically to assess the model performance as 
compared to the target ranges and the effect of weighting attributes. The analysis focused on the time-
dependent damage modes, i.e., those related to corrosion damage. These models were selected for the 
analysis for three reasons. First, the primary deterioration mechanism for highway bridges is corrosion, 
which affects all bridges in the inventory to varying degrees. Second, the corrosion risk models include 
the largest number attributes making their calibration the most challenging. Finally, risk models for 
damage modes such as impact damage and fatigue cracking are dependent primarily on characteristics 
such as ADT, vertical clearance, or era of construction. These models are typically consistent over time for 
a given bridge and rely primarily on engineering decision-making regarding the attributes that control the 
risk. For example, the likelihood of impact damage is independent of the CR for the superstructure of a 
bridge. Damage modes associated with corrosion are time dependent and would be expected to have 
increased risk scores as the CR for the component declines and the bridge ages. The analysis was 
conducted with the objective of analyzing if the risk scores were consistent with the target ranges for 
bridge components with CRs of 5, 6, or ≥ 7.  

The analysis was conducted on a component level examining components in CR ≥ 7, CR 6, and CR 5 
separately. Components in CR 4 or CR 3 were neglected from most of the analysis because these 
components are screened from an RBI analysis. The risk scores for these components with CR ≤ 4 can be 
seen in Figure 2.6 and Figure 2.9 which show that the risk scores for these components were similar to CR 
5 components.  
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2.5.1. Back-Casting Results – All Components 
The combined results for the components of deck, superstructure, and substructure were analyzed for 
corrosion-related damage mode of delamination and spalling for R/C decks, R/C substructures, and PSC 
superstructures, and for corrosion damage / section loss for steel superstructure components. The data 
analyzed consisted of the risk scores determined from the individual risk models developed from the six 
different RAPs.  

The results were analyzed to determine the overall distribution of results and quantify the impact of 
weighting components. This method of analyzing the results provides insight into the expected results for 
a larger population of bridges. It was assumed in the analysis that the risk scores were normally 
distributed. In the analysis, the risk scores were sorted into bins with a range of 0.25. For example, risk 
scores of 1.10, 1.15, and 1.20 were counted in a bin with the range (1.00 < x ≤ 1.25). Risk scores were 
sorted according to the CR for the subject component. These data were analyzed for unweighted and 
weighted risk models.  

The mean and sample standard deviation of the risk scores assigned to each CR were used to produce 
normal distribution plots to illustrate the distribution of the risk scores. Cumulative normal distribution 
curves are presented to demonstrate the proportion of a bridge inventory that would be expected to have 
risk scores that fall within the OF ranges for remote, low, moderate, or high. Components in “Good” 
condition (i.e., CR ≥ 7) were grouped together and components in “Poor” condition (i.e., CR ≤ 4) were 
neglected from the analysis. 

The results for all of the components considered in the analysis are shown in Figure 2.14A and Figure 
2.14B. Figure 2.14A shows the results from the unweighted risk models. Results for CR 5, CR 6, and CR ≥ 
7 are shown separately. The bar chart presents the number of risk scores (i.e., count) falling into each bin 
on the left ordinate. The right ordinate shows the frequency or proportion of components from a normal 
distribution based on the mean and sample standard deviation of the data for each CR. This axis is 
unscaled because the data are normalized such that the integral of each normal curve is equal to 1. The 
horizontal axis on the bottom shows the OF category, and the horizontal axis on the top of the plot shows 
the numerical values of the risk scores.  

It can be observed in these results that the mean value for CR ≥ 7 bridges (the apex of the normal 
distribution curve) is larger than 1.0, and these data appear normally distributed. For CR 6 components, 
the mean value is close to 2.0, and for CR 5 bridges, the mean value is in the range of ≈ 2.5. Overall, it can 
be observed that the trend of these data correlate with the CR, i.e., CR 7 components have lower risk 
scores as compare with CR 6 components, and CR 6 components have lower risk scores than CR 5 
components.  

Figure 2.14B illustrates the effect of weighting the CR and CS attributes (C.1 and C.2) for the different 
components. Qualitatively, it can be observed that the risk scores for CR ≥ 7 bridges are decreased as 
compared with Figure 2.14A, and the risk scores for CR 5 components are increased. This illustrates that 
the overall effect of the weighting was to provide greater discrimination in the risk scores for CR 5, 6, and 
≥ 7 bridges. It can also be observed in Figure 2.14A that the mean values for components with CR ≥ 7 and 
CR 6 are in the low range and mean value for components with CR 5 is in the moderate range. When the 
model is weighted, the mean value for components with CR ≥ 7 is reduced to being in the remote range. 
It can also be observed that the mean value for components in CR 5 has increased to being closer to the 
numerical value of 3.0.  

The cumulative probability distribution shown in Figure 2.15 quantifies the percentage of the components 
expected to fall within each OF category. The cumulative probability graph shows the probability of a 
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randomly selected component being ranked as remote, low, moderate, or high. The figure shows the 
results from the unweighted and weighted models as different line types. The weighting causes those 
components with CRs ≥ 7 to tend toward a lower category, from low to remote. For components in CR 5, 
the weighting causes the curve to shift to the right, which increases the probability that a given CR 5 
component will be categorized as high and reduces the likelihood of a CR 5 component will be categorized 
as low or Remote.  

 
Figure 2.14. Combined results for all components showing risk scores (OF) for sample bridge 

components in unweighted (A) and weighted (B) models. 

These results illustrate several important points. First, components that are rated CR ≥ 7 generally score 
much lower than components rated in CR 5. This is not surprising since the CR accounts for a large portion 
of the scoring, so two components with the same attributes in the risk model but different CRs will always 
score differently. But more importantly, components rated in CR ≥ 7 do not all score in the “remote” 
category, only 58% of components will score in that range based on the mean and sample standard 
deviation of these data. As shown in the figure, 42% of the components in CR ≥ 7 will be in the low or 
moderate category. These components are those with increased risk factors as identified by the individual 
RAPs, meaning that the models are sensitive to loading and design attributes, as well as other condition 
attributes such as joint condition. For example, if most of the attributes in the risk model were rated as 
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high, the risk score will be in the low or even moderate range. In this way, the models are shown to be 
sensitive to changes in the attributes identified by the RAPs when applied to real bridges.  

Considering the results quantitatively shows some important results from weighting the attributes C.1 
and C.2. Based on the statistics from the sample bridges, the weighting increased the proportion of CR ≥ 
7 components rated as remote from 41% to 58%, meaning most CR ≥ 7 components will be rated in the 
remote range, based on the statistical analysis. Recalling the risk matrix shown in Figure 1.5B, components 
with a remote OF have a 72-month interval if the CF was rated as high. For components in CR 5, the 
weighting had the effect of reducing the proportion of components rated as low from 24% to 17%, 
meaning that 50% of components in CR 5 will be rated in the moderate category and 33% will be rated in 
high category.  

 
Figure 2.15. Cumulative probability distribution for all components showing results for the weighted 
and unweighted models. 

Components that have CR 6 were essentially unchanged by the weighting. These data shown in Figure 
2.15 indicate that 60% of randomly selected components will have risk scores in the remote or low range. 
This is consistent with the Method 1 policy that a bridge with components in CR 6 may be eligible for a 
48-month inspection interval. In fact, those CR 6 components rated as remote could be eligible for interval 
of 72-months regardless of the CF and those rated as low could qualify for a 72-month interval if the CF 
was moderate, as shown in Figure 1.5B. 

The results indicate the quality of the risk models was improved toward target ranges by increasing the 
weight of the primary condition attributes by a factor of 2 relative to the other attributes in the model. 
The data were analyzed in a similar manner for R/C decks and steel superstructures; these data are 
presented below. Similar results were found for PSC superstructures and R/C substructure components. 
Quantitative values for the mean and standard deviation for all components combined, and for deck, 
superstructure, and substructure components individually, are shown in a summary table at the end of 
the section.  
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2.5.2. Back-Casting Results – R/C Decks  
The analysis of R/C deck risk scores was completed using data from all 60 bridges in the sample bridge 
population. The results of the risk scoring were analyzed to assess if the weighting process used with 
individual components such as the deck, superstructure, or substructure produced results that were 
consistent with the results from all components in the study combined that was presented in the previous 
section.  

Figure 2.16A shows the results for unweighted R/C deck risk models with the risk scores presented as a 
bar chart and the normal distribution presented as a line plot. The results showed that analyzing 
components in good condition generally resulted in risk scores of less than 2.0, while risk scores for 
components in fair condition were greater than 1.0 and less than 3.0. The normal distribution curves 
illustrate that the mean value for CR ≥ 7 decks was in the range of remote (i.e., ≤ 1.0), CR 6 components 
were rated in the Low range, and CR 5 components were rated as Moderate in terms of the OF for the 
decks.  

 
Figure 2.16. Back-casting results for deck components based on unweighted (A) and weighted (B) risk 
models. 
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The results from the weighted models are shown in Figure 2.16B. The effect of weighting was to increase 
the number of CR ≥ 7 deck components rated in the remote to low range and increase the number of CR 
5 components rated in the moderate to high range for the OF.  

The significance of weighting the risk models can be quantified by examining the cumulative distribution 
function based on the normal distributions shown in Figure 2.16. This cumulative distribution is shown in 
Figure 2.17. The effect of weighting the condition attributes in this manner was to increase the probability 
that a CR ≥ 7 component will be categorized as remote in term of the relative risk. For example, the 
unweighted model showed a 54% probability of a CR ≥ 7 component being rated in the remote OF 
category. Using the weighted model, the probability of being categorized as remote is increased to 72%. 
In other words, almost ¾ of deck components in good condition will be rated in the remote category. This 
is consistent with engineering judgement that most CR 7 decks are very unlikely to suddenly become CR 
3 decks. Twenty-eight percent of the decks in CR ≥ 7 will be categorized as having a low likelihood of 
deteriorating to a CR of 3 in the next 72-month time interval.  

On the other hand, deck components in CR 5 will have an increased risk of deteriorating to a CR 3 in the 
next 72-month interval, and this is shown in the data. About 19% of decks in CR 5 will be categorized as 
high for relative risk of deteriorating to a CR 3 in the next 72-month interval. Only 34% of CR 5 decks will 
be rated as having a low or remote OF.  

The results are based on a relatively small number of data points – only 60 decks; however, they illustrate 
that the RAP models were effective in ranking bridges relatively and identifying those components with 
elevated risk. More precise “tuning” of the weights could be used to further delineate the relative risk 
levels. A methodology for analyzing bridges within a state inventory will be discussed in Chapter 3.  

 
Figure 2.17. Cumulative probability distribution function for weighted and unweighted risk models for 
deck components. 
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2.5.3. Back-Casting Results – Steel Superstructure Corrosion Damage  
The results for the damage mode of corrosion damage / section loss for steel superstructures were 
analyzed for the population of 40 steel bridges in the study. The results for the unweighted risk models 
are shown in Figure 2.18A and the weighted model results are shown in Figure 2.18B. Results for the steel 
superstructure corrosion / section loss model were similar to the results for decks and all components 
combined. The mean OF value for CR ≥ 7 steel superstructures in the unweighted models was in the low 
range. The mean value was reduced to the remote range when the risk models were weighted. The mean 
value for CR 6 steel superstructures was not significantly affected by the weighting, while the mean value 
for CR 5 steel superstructures was slightly increased.  

 
Figure 2.18. Back-casting results for steel superstructure components based on unweighted (A) and 

weighted (B) risk models. 

The quantitative results are shown in Figure 2.19 with data labels showing key transitions between 
different OF categories. As shown in the figure, the weighting of the risk models increases the likelihood 
that a randomly selected CR ≥ 7 steel superstructure will be rated as remote from 38% to 54%. The 
weighting also has significant impact on CR 5 steel superstructures. In the unweighted model, the 
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likelihood of a randomly selected steel superstructure being rated as either moderate or high is 82%, while 
in the weighted model that likelihood is increased to 90%.  

The mean and standard deviation values from the analyses are shown in Table 2.8 for all of the 
components combined into one group and for R/C decks. Table 2.9 shows the results for steel 
superstructures, PSC superstructures, and R/C substructures. The results are presented with the mean 
value above the sample standard deviation (shown in parenthesis) for CR ≥ 7 components. Results from 
the unweighted models are shown in the first row of data and results from the weighted models are 
shown in the second row of data. The trends illustrated in the figures above are shown in the quantitative 
data in the table. For example, the mean values for CR ≥ 7 components were reduced by the weighting of 
the condition attributes of CR (C.1) and the CS (C.2), and the mean value for CR 5 components was 
increased. The sample standard deviations generally tended to be reduced for the weighted models as 
compared with the unweighted models.  

 
Figure 2.19. Cumulative distribution function for steel superstructure corrosion damage mode showing 
weighted and unweighted results. 

For PSC superstructures, there was only a single CR 5 component in the sample bridge population, so 
statistics are not presented for CR 5 PSC superstructures. It is also notable that the PSC superstructure 
models indicate that most PSC superstructures will be in the remote OF rank even in the unweighted 
models, based on the statistical analysis.  

The back-casting study provided data-driven analysis of the risk models developed by the RAPs applied to 
a population of 60 sample in-service bridges. However, the methodology of analyzing historical inspection 
records to analyze the effectiveness of the models was time consuming and arduous. Additionally, the 
unique nature of individual bridges requires a significant number of bridges to be analyzed to produce 
generalized conclusions; validating the accuracy of that conclusion is challenging. In order to calibrate risk 
models to meet the target values, a more efficient process was sought that  provides a systematic 
methodology to test the risk models, assess the effects of changing the weight or number of attributes in 
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the model, or assess the impact of different criteria used to rate the individual attributes. A systematic, 
data-driven method was developed to predict the outcomes from the risk models and support 
implementation of the RBI process.  

Table 2.8. Table showing mean and standard deviation data for all components combined and R/C 
deck delamination and spalling damage mode.  

Model 
All 

comp 
CR ≥ 7 

All 
comp 
CR 6 

All 
comp 
CR5 

Decks 
CR ≥ 7 

Decks 
CR 6 

Decks 
CR5 

Unweighted Mean  
(Std. Dev.) 

1.11 
(0.52) 

1.89 
(0.55) 

2.54 
(0.75) 

0.96 
(0.49) 

1.73 
(0.53) 

2.25 
(0.81) 

Weighted Mean  
(Std. Dev.) 

0.90 
(0.48) 

1.87 
(0.54) 

2.68 
(0.72) 

0.76 
(0.41) 

1.73 
(0.52) 

2.32 
(0.78) 

 

Table 2.9. Table showing mean and standard deviation data steel superstructure, PSC superstructure, 
and R/C substructure delamination and spalling.  

Model Stl. Cor 
CR ≥ 7 

Stl. Cor 
CR 6 

Stl. Corr 
CR 5 

PSC SS 
CR ≥ 7 

PSC SS 
CR 6 

Sub 
corr. 

CR ≥ 7 

Sub 
corr. 
CR 6 

Sub 
corr. 
CR5 

Unweighted 
Mean 

(Std. Dev.) 

1.15 
(0.45) 

2.03 
(0.51) 

2.66 
(0.72) 

0.88 
(0.54) 

2.06 
(0.45) 

1.31 
(0.49) 

1.96 
(0.61) 

2.86 
(0.66) 

Weighted 
Mean 

(Std. Dev.) 

0.95 
(0.45) 

2.01 
(0.46) 

2.78 
(0.61) 

0.66 
(0.45) 

2.16 
(0.42) 

1.09 
(0.49) 

1.89 
(0.60) 

3.02 
(0.68) 
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Chapter 3.   
The Monte Carlo Approach  

Monte Carlo simulation is a common method of analyzing multi-variable processes when there is 
uncertainty in the variables that form the input. The method uses probabilistic theories to combine the 
results from different input variables and provide a variety of outputs that are possible outcomes, given 
the probabilistic characteristics of the input. The method is frequently used in risk assessment when there 
is uncertainty in the parameters affecting the level of risk. This approach was used to develop a 
methodology for analyzing the potential outcomes of the risk models developed by the RAPs. The 
methodology allows the user to assess the criteria used in a risk model, assess the effect of applying the 
risk model to families of bridges with similar characteristics, and calibrate a risk model to produce results 
consistent with the target ranges described earlier in the report. 

The structure of the MC simulations used in this research is illustrated if Figure 3.1. The process begins 
with a RAP developing a risk model that includes attributes and criteria for each attribute, shown as the 
RAP model in the figure. Probability distributions are then determined or estimated for each attribute to 
describe the likelihood of a given attribute being rated very high, high, moderate, or low according to the 
criteria from the RAP model. These data provide the input for the MC simulation.  

The MC simulation produces values of 1 (low), 2 (moderate), 3 (high), or 4 (very high) that are distributed 
according to the probabilities inputted for each attribute. The simulation produces 30,000 different risk 
scores (i.e., OF values) based on these probabilities. This results in 10,000 separate risk scores for each CR 
(i.e., CR ≥ 7, CR 6, and CR 5). The output of the MC simulation describes the likely outcomes from 
implementing the risk models on a family of bridges. The steps to performing the MC simulations are 
relatively straightforward: 

1. The RAP develops a risk model for a component that identifies attributes that have an impact on 
the POF, i.e., damage evolving to a point where a component is rated in serious condition (CR 3) 
during the next 72 months. 

2. Criteria for each attribute are identified by the RAP based on engineering judgement. The criteria 
characterize the attribute’s rating as very high, high, moderate, or low in terms of the attribute’s 
impact on the POF. 

3. The probability of each attribute being rated as very high, high, moderate, or low based on its 
criteria is calculated or estimated for the subject family of bridges being analyzed. The likelihood 
estimate can be made based on available bridge inventory data, estimates by an engineer or 
analyst, or by the RAP members through a Delphi process using questionnaires.  

a. If data is available from element-level inspection results, information in the bridge file, 
past inspection reports, or SNBI items, the conditional probability can be determined 
based on frequency. The probabilities should consider the CR of the component. For 
example, a deck rated in CR ≥ 7 has a different likelihood of having CS 3 quantities greater 
than 5% as compared with a deck rated in CR 5.  

b. If data is not available for the given attribute, probabilities can be determined based on 
point estimates. For example, a bridge owner is unlikely to have data recording the 
concrete cover of bridge decks. However, engineers familiar with the bridge inventory 
and the evolution of construction specifications in a state can estimate what proportion 
of inventory is likely to have low cover. Precision is not required, although obviously the 
higher quality the input data, the higher quality the output data. If the attribute 
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probabilities are deemed critical, a Delphi process can be used to elicit expert opinion 
from the RAP panel or other experts in a systematic way.  

4. Perform MC simulations using the risk models and the attribute probabilities to determine the 
mean and standard deviation of the resulting data. The MC simulations use the probability data 
developed in step 3 for each attribute.  

5. Based on the MC simulations, construct cumulative distribution curves to present the MC outputs 
graphically. These curves can be used to analyze the likely outcome from the applying the risk 
model to the subject family of bridges.  

 
Figure 3.1. Schematic of the MC simulation process applied to a risk model. 

The results produced from the MC simulation were found to be a powerful tool that enables several 
different critical tasks for developing effective risk models: 

1. Calibration of the risk models to determine the appropriate weights for individual attributes to 
meet target ranges.  

2. Comparing risk model results for components of different CRs.  
3. Conducting sensitivity studies to assess the thresholds used for the criteria for each attribute.  
4.  Analyzing the outcome of applying the risk models to bridge families or portions of bridge families 

with similar characteristics.  
5. Predict the impact of an extended inspection interval policy on a bridge inventory. 

For example, MC simulations can be used to show the effect of weighting the condition attributes of CR 
and CS as compared with weighting attributes like ADT or Rate of Deicing Chemical Application. The MC 
simulations also provide simple illustrations of how bridge components with different CRs compare one 
to another.  

The outcome from applying risk models to bridges of the same family, but with different characteristics, 
can also be assessed using the MC simulation approach. For example, MC simulations can be used to 
compare how the RAP model will rate a population of bridges with high ADT as compared to a population 
of bridges with low ADT. The following section provides an example of MC simulation results for a bridge 
deck to illustrate the process and the analysis that can be conducted using this approach.  
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3.1.1. Example Bridge Deck MC Simulation 
The process illustrated in Figure 3.1 was used to analyze a model for R/C decks to illustrate how the overall 
process works. Table 3.1 shows a risk model developed by a RAP for delamination and spalling in a typical 
R/C deck on a steel superstructure in Wisconsin. There are nine attributes identified by the RAP, including 
CR, CS, joint condition, etc. For each attribute, the RAP identified criteria that describe a quantity or 
condition that would indicate an increased impact on the POF. For example, for attribute C.2, Current 
Element CS, if a deck had a wearing surface (Element 510) with > 10% CS 3 damage OR a deck (Element 
12) with > 5% CS 3, it would have high impact on the POF.  

Table 3.1. Example deck risk model with 9 attributes. 

Attribute Rank Criteria Rating 

C.1, Current condition rating High 
CR 5 
CR 6 

CR ≥ 7 

High 
Mod. 
Low 

C.2, Current Element CS or 
Plow damage High 

Deck Surface (El. 510) CS3 > 10%, or El. 12 > 5% 
Deck Surface (El. 510) CS3 1 – 10%, CS2 ≥ 15%, or 1% ≤ El. 

12 ≤ 5% 
Deck Surface (510) CS 1 or CS2 < 15%, CS 3 < 1%, El. 12<1% 

High 
Mod. 
Low 

C.13, Efflorescence/Staining 
Deck Soffit High 

Deck Element Soffit > 5% 
Deck Element Soffit 1% ≤ CS3 ≤ 5% 

Deck Element Soffit < 1% 

High 
Mod. 
Low 

L. 1A Average Daily Traffic High 
ADT ≥ 20,000 

ADT 10,000 – 19,999 
ADT < 10,000 

High 
Mod. 
Low 

L.5 Rate of Deicing Chemical 
application High 

Interstate / Urban or ADT > 10,000 
Rural, Non-Interstate, 2,000 < ADT < 10,000 

Rural, Non- Interstate, ADT < 2000 

High 
Mod. 
Low 

L.2, Dynamic Loading from 
riding Surface Mod. 

Dynamic forces increase rate of deterioration (ADE 9324 
CS4) 

Dynamic forces not a significant consideration 

High 
Low 

D.4/C.7 Poor Deck Drainage 
and Ponding /Quality of Deck 

Drainage 
High 

Element 9004 Deck Drainage: CS 3 or open rails  
Element 9004 Deck drainage: CS 2 
Element 9004 Deck drainage: CS 1 

High 
Mod. 
Low 

D.29/C.30, Corrosion 
Protection Level High 

CP1 
CP2 
CP3 
CP4 

V. High 
High 
Mod. 
Low 

C.29 NDE Applied High Non- NDT 
The bridge is subject to NDT 

High 
Low 

For each attribute in the model, an estimate of the likelihood of that attribute being rated as high, 
moderate, or low was produced from either bridge inventory data or engineering judgement. Most 
attributes were estimated from bridge inventory data. For example, considering the attribute C.2, Element 
CS, data for NHS bridges in the subject state were analyzed to determine the probability of a CR ≥ 7 deck 
on a steel bridge meeting the high criteria, meaning that the wearing surface element (Element 510) has 
more than 10% CS 3 or the deck element (Element 12) has more than 5% CS 3. Probabilities were 
determined for the high, moderate, and low criteria for deck components in CR ≥ 7, CR 6, and CR 5 as 
shown in Table 3.2. Calculated probabilities were obtained from a simple frequency analysis – i.e., 
counting the number of decks on steel bridges in CR ≥ 7 that met the high criteria and dividing by the total 
number of CR ≥ 7 decks on steel bridges. The probabilities are different for CR ≥ 7, CR 6, and CR 5 decks 
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as would be expected. As shown in Table 3.2, CR ≥ 7 decks have a zero or near – zero probability of meeting 
the high criteria based on historical data. Deck components rated in CR 6 have a 2% likelihood meeting 
the criteria while deck components rated in CR 5 have a 14% chance.  

Table 3.2. Example probability table for attribute C.2, Current element condition state.  

Criteria  Rating CR ≥ 7 CR 6 CR 5 

Deck Surface (El. 510) CS3 > 10%, or El. 12 > 5% High 0% 2% 14% 

Deck Surface (EL. 510) CS3 1 – 10%, CS2 ≥ 15%, or 1% ≤ El. 12 
≤ 5% Mod. 10% 23% 42% 

Deck Surface (510) CS 1 or CS2 < 15%, CS 3 < 1%, El. 12<1% Low 90% 75% 44% 

It should be noted that this probability analysis was completed using Microsoft Excel and existing data 
from the NBI (https://infobridge.fhwa.dot.gov/) and the FHWA NHS element-level data 
(https://www.fhwa.dot.gov/bridge/nbi/element.cfm). Most bridge owners will have internal databases 
used for asset management that contain these data.  

For data that were not available from inventory or element-level data, point estimates were used. For 
example, data for attribute C.13, Efflorescence / Staining of the deck soffit was not available, so the 
probabilities were estimated based on engineering judgement. Most CR ≥ 7 decks are unlikely to have 
significant soffit damage while a significant proportion of CR 5 decks may have soffit damage. A 
conservative point estimate was made of the probability of a bridge deck meeting the high, moderate, or 
low criteria as shown in Table 3.3. It was estimated that 3% of decks rated in CR ≥ 7, 5% of CR 6 decks, and 
20% of CR 5 decks may be rated as high.  

Table 3.3. Probability estimate used to describe C.13, Efflorescence/staining for bridge decks.  

CR ≥ 7 (%) 
[H / M / L]  

CR 6 (%) 
[H / M / L]  

CR 5 (%) 
[H / M / L]  

[3 / 7 / 90] [5 / 10 / 85] [20 / 20 / 60] 

Estimates for each attribute were developed from inventory data or by engineering estimate. The 
probability values provided the input data for the MC simulations.  

Example results for the MC simulation are shown in Figure 3.2A and Figure 3.2B. Figure 3.2A shows the 
probability distribution from the MC simulation based on the risk model shown in Table 3.1. The bar chart 
illustrates the number of MC simulations resulting in the value represented by each column or bar. The 
line plot shows the probability distribution function based on the mean and standard deviation of the data 
represented in the bar chart. As shown in the figure, the MC simulations produce normally distributed 
results represented by the bar chart and modeled by the line plot. From these data, the cumulative 
probability distribution was determined as indicated by the arrow in the figure.  

Figure 3.2B shows three cumulative distribution curves produced from the data shown in Figure 3.2A. The 
cumulative probability distribution curve quantifies the probability of a randomly selected deck being 
rated as having remote, low, moderate, or high OF based on the simulation. For example, the data shows 
that about 76% of CR ≥ 7 decks will be assessed as having remote likelihood and ≈24% will be assessed as 
low. Approximately 31% of deck components rated as CR 6 will be rated as remote with most others rated 
as low. Deck components in CR 5 will be assessed as low or moderate. In this way the MC results shown 
in Figure 3.2B quantify the likely outcomes from the risk model being applied to a population of actual 
bridges with characteristics typical of the bridge population on which the analysis is based.  

https://infobridge.fhwa.dot.gov/
https://www.fhwa.dot.gov/bridge/nbi/element.cfm
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Components that present uncommonly high POF as compared with typical bridges are not captured by 
the MC simulations because their attributes do not match the typical values used to form the model. For 
example, a deck rated in CR 7 with more than 5% CS 3 damage would be unusual and would have an 
increased risk as compared with typical CR 7 decks. The damaged deck is captured by the risk model but 
is not included in the MC simulation, as will be discussed in the following section.  

 
Figure 3.2. Example MC simulation results for CR ≥ 7, CR 6, and CR 5 bridge decks showing probability 

distribution (A) and the cumulative probability distribution (B).  

3.2. Identifying Components with Elevated Risk  
The foundation of the MC simulation uses the typical attributes found in the bridge inventory and the 
associated probabilities such that the MC outcome reveals typical results. In this way the bridge owner 
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can assess what the typical results will be for a given family of bridges, but not the specific results for an 
individual bridge. For example, it is unlikely that a bridge deck with CR 7 will have more than 5% CS 3 
damage, as previously mentioned. But if that were the case, then the score may be higher than any values 
predicted by the MC simulation. 

For example, consider a bridge deck with different levels of actual damage or potential for damage using 
the risk model shown in Table 3.1. The damage in the deck is described by the condition attributes C.1, 
Current Condition Rating, C.2, Element Condition State, and C.13 Efflorescence/Staining. The potential for 
damage is described by the loading and design attributes such as ADT, Rate of Deicing Chemical 
Application, Poor Deck Drainage, etc. Three different scenarios are shown in Table 3.4.  

Scenario 1 presents a deck with current damage and relatively low potential for future damage. Scenario 
1 is a deck with more than 5% CS 3 damage in the deck element, damage in the soffit of the deck, low 
ADT, a low rate of deicing chemical application, typical corrosion protection (i.e., ECR with normal cover, 
CP 2), good deck drainage, and NDT testing applied to the deck.  

Scenario 2 is a deck without current damage in the deck or soffit, but with other attributes that indicate 
the potential for damage is increased as compared with other decks. For this case, the CS attribute C.2 is 
rated as low, there is no damage in the soffit of the deck, but the deck is exposed to high ADT, high rate 
of deicing chemical application, poor deck drainage, and no NDT testing.  

Scenario 3 illustrates a deck with both current damage to the deck and high potential for damage. Scenario 
3 includes CS 3 damage of greater than 5% in both the deck and the soffit, high ADT, high rate of deciding 
chemical application, and poor deck drainage.  

The resulting OF values calculated from the risk model for each scenario are listed in Table 3.4 and shown 
graphically in Figure 3.3. As these data show, a deck in CR 7 with damage in the deck scores in the low OF 
range (1.33). For scenario 2, where the potential for damage is high but damage has not yet occurred, OF 
values are also rated in the low range (1.96), but any damage in the deck pushes that result from low to 
moderate. For deck components with both current damage in the deck AND attributes that indicate a high 
potential for deterioration, a CR  7 component scores in the high range. These values are increased for a 
CR 6 and CR 5 decks.  

Table 3.4. Example scenarios for decks with damage and the resulting OF values. 

Scenario 
No. Scenario Description CR ≥ 7 

(OF) 
CR 6 
(OF) 

CR 5 
(OF) 

1 

Deck with CS 3 > 5% damage in deck and soffit, no 
efflorescence or staining, low ADT, low rate of deicing 

chemical application, good deck drainage, no dynamic loading, 
and NDT applied.  

1.33 1.69 2.04 

2 
Deck without deck or soffit damage, high ADT, high rate of de-

icing chemical application, poor deck drainage, dynamic 
loading on deck, and no NDT applied  

1.96 2.31 3.38 

3 
Bridge deck with CS 3 > 5% damage in deck, soffit damage, 

High ADT, high rate of deicing chemical application, dynamic 
loading on deck, poor deck drainage, and no NDT 

3.02 3.38 3.73 

Figure 3.3 shows the cumulative probability distribution curves based on the conditional probabilities for 
each attribute for a deck in CR ≥ 7, CR 6, and CR 5. The results for the three different scenarios are shown 
as individual points on the figure with the ordinant values chosen arbitrarily to provide clarity in the figure. 
The points are color-coded to indicate the CR of the deck as CR 7 (green), CR 6 (yellow), or CR 5 (red). 
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Values for decks in CR 7 are shown with data labels. As shown in the figure, the original MC simulation 
that produced the curves did not predict any CR 7 bridges would score in the moderate or high range, 
with most CR 7 decks being assessed in the remote range. This is because the likelihood of a CR 7 deck 
having a significant amount of CS 3 damage is small given the typical probabilities for the overall inventory 
of bridges. However, were the deck to be atypical and have significant damage (i.e., scenario 1), the OF 
value is increased.  

If the potential for damage is high (i.e., scenario 2), the OF value is also increased. For scenario 2, the OF 
value for the CR 7 deck is 1.96, a value greater that any predicted by the MC simulation. This is due to the 
low likelihood that all attributes associated with the potential for damage would be rated as high for an 
individual deck. Regardless of the likelihood of this situation, the risk model assesses the elevated risk 
associated with the high potential for damage.  

The highest OF scores are obtained when the deck has both damage and high potential for damage (i.e., 
scenario 3). For scenario 3, the OF for the CR ≥ 7 deck is elevated to 3.02, indicating a high relative 
likelihood of failure. For all three scenarios, the OF values for decks rated in CR 6 and CR 5 are also elevated 
as would be expected.  

 
Figure 3.3. Results for different damage scenarios plotted with MC simulation results. 

This example illustrates the objective of the risk model to identify the increased risk that may be present 
if there is atypical damage (scenario 1), atypical potential for damage (scenario 2), or both (scenario 3). In 
this way, the example illustrates the approach of using a MC simulation to produce expected or typical 
results for a family of bridges. The atypical component with unusually high damage or potential for 
damage can be identified because its risk score is greater than would be expected for the typical bridge 
represented by the MC simulation. When applied to actual bridges where a CR ≥ 7 deck is expected to 
have a remote OF, a bridge with atypical characteristics is appropriately assessed as having increased risk 
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as indicated by the OF being categorized by low, moderate, or high. The example illustrates how the MC 
simulation can be used to identify those bridges that present elevated risk and require shorter inspection 
intervals and those that do not have elevated risk. This is precisely the objective of the risk analysis. 

Different scenarios can be studied probabilistically using the MC simulations by setting certain 
probabilities at 100%. To illustrate this feature, five scenarios were considered as shown in Table 3.5. The 
analysis considers the original MC model with typical probabilities for attributes. Three scenarios consider 
increasing levels of damage with the deck element having CS 3 > 5%, both the deck and the deck soffit 
having CS 3 > 5%, finally the deck and soffit having CS 3 > 5% and high ADT. Finally, a scenario is considered 
in which the attributes other than condition are rated high.  

Table 3.5. Scenarios for probabilistic analysis of a risk model for decks. 

Scenario No.  Scenario Description 
1 CR ≥ 7 deck with original probabilities for attributes, deck CS 1, typical ADT 
2 CR ≥ 7 deck with deck element (El. 12) CS 3 > 5%, soffit CS 1, typical ADT  
3 CR ≥ 7 deck with deck element (El. 12) CS 3 > 5%, soffit damage CS 3 > 5%, typical ADT 
4 CR ≥ 7 deck with deck element (El. 12) CS 3 > 5%, soffit damage CS 3 > 5%, and high ADT  
5 CR ≥ 7 deck with deck element (El. 12) CS 1, soffit CS 1, high ADT, high deicing, high ponding, 

dynamic loading and no NDT  

The results of this analysis are shown in Figure 3.4. The figure shows only results for CR 7 decks for clarity. 
As the damage in the deck increases, the distribution curve is shifted to the right such that when CS 3 
damage is present at a level of greater than 5% in the deck, only about 12% of decks will be rated in the 
remote range. If there is damage in both the deck and the soffit, most CR 7 decks will be rated as low with 
≈33% being rated in the moderate range. Finally, if the deck was also exposed to high ADT, most of the CR 
7 decks will be rated in the moderate range (≈67%). The figure also shows the results of having CS 1 in the 
deck and soffit, but attributes that address the potential for damage are rated high. This scenario 
considers a deck with high ADT, high deicing chemical application, poor deck drainage, dynamic loading 
on the deck, and no NDT applied. This scenario is labeled as “High potential for damage” in the figure. 
Most decks with these precursors to damage will be rated in the low category (67%).  

These examples illustrate how the MC simulations based on conditional probabilities for the attributes 
identified by the RAP form a model that can be used to analyze the results of applying risk models to a 
population of bridges. However, risk models can have different numbers of attributes, and the attributes 
can have different relative weights. To make the MC simulation procedure described above practically 
implementable, an understanding of the sensitivity of the process is needed so engineers can analyze the 
way in which the number of attributes in the model affect the outcome. The following section presents a 
parametric study of the effect of the number of attributes has on the outcome of the MC simulation 
process.  

3.3. Example MC Simulation for R/C Decks  
This section presents the application of the MC simulation process to the example risk model developed 
for bridge decks shown in Table 3.1. The section describes the different steps in producing the MC 
simulation in terms of obtaining probabilities to describe the attributes and examples of how the MC 
simulation can be used to analyze different scenarios such as comparing how the risk model will assess 
high ADT bridges as compared with low ADT bridges.  
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Figure 3.4. MC simulation results for decks with increasing levels of damage as shown in Table 3.5. 

The different deck risk models developed by the RAPs under the project shared many common attributes 
such as the CR and CS, rate of deicing chemical application, and ADT. The Wisconsin model was unique in 
having an attribute to consider the reduced risk from performing nondestructive testing (NDT) as part of 
the condition assessment of the deck. Performing NDT on the deck provides additional insight on the 
condition of the deck by detecting subsurface damage not observable in a routine visual inspection. The 
attribute in the risk model represents this effect by reducing the overall risk score, and the MC simulation 
was used to assess how including this attribute in the risk model affects the likelihood of a CR 7 deck being 
rated in the remote, low, moderate, or high OF category. 

3.3.1. Assessment of Probabilities  
As previously mentioned, bridge inventory data and element level inspection results can be used for many 
of the attributes listed in the risk models to determine the probabilities for each attribute. For situations 
where there is no available data for a given attribute, engineering judgement can be used. In addition, the 
interaction or coupling of different attributes must be considered when estimating the probabilities for 
different criteria. For example, if ADT values are used for more than one attribute in a model, these 
attributes may be coupled. If ADT is part of the criteria for rating the increased deterioration rate that 
may result from high traffic volumes, and ADT is part of the criteria for rating the application of deicing 
chemicals, the attributes are coupled because ADT levels will affect the rating for both attributes. The 
algorithms within the MC simulation need to be appropriately adjusted to consider the coupling of the 
ADT attribute and the Rate of Deicing Chemical Application attribute. For example, when bridges with 
ADT > 10,000 vehicles per day (vpd) are rated as moderate for the attribute L.1, ADT, then the Rate of 
Deicing Chemical Application is also rated as high. The MC models must consider this interaction to 
produce a reliable result.  
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3.3.2. RC Bridge Deck Attribute Probabilities 
An analysis of RC bridge decks was conducted based on the Wisconsin risk model shown previously in 
Table 3.1. The risk model included nine attributes. Most of the attributes were rated on a low, moderate, 
and high rating scale. There were two attributes what were rated on a high-low basis. Bridge decks 
subjected to dynamic loads resulting from the “bump at the end of the bridge” were rated as either high 
or low. Additionally, there was an attribute to assess the reduction in risk from performing NDT of the 
deck as part of the condition assessment.  

The element-level data for NHS bridges were analyzed to estimate probabilities for attributes in the risk 
model. The attribute C.2, Element Condition State included both the deck element (Element 12) and the 
wearing surface (Element 510). The data for NHS bridges were used to provide estimates of the 
probabilities of a randomly selected deck being rated as high, moderate, or low. The analysis utilized 
criteria for the deck element (Element 12) and the wearing surface element (Element 510) as shown in 
Table 3.2. For the rating of high, the deck element had a threshold of greater than 5% in CS 3, while the 
wearing surface element had a threshold of 10%.  

3.3.2.1. Average Daily Traffic Analysis  

The ADT values for the state of Wisconsin were determined from an analysis of the 2022 NBI data. The 
analysis considered state-owned bridges to provide a conservative estimate of traffic levels, since state – 
owned bridges will typically have the greatest number of vehicles as compared with locally owned bridges. 
The NBI data for Wisconsin were analyzed for bridges with steel superstructures specifically. To conduct 
the analysis, the NBI data was reduced to only those bridges with steel superstructures and basic 
configurations (stringer, stringer and floor beams, and box beams). For bridge decks, there were two 
attributes that considered the ADT levels in the analysis. Loading attribute L.1, ADT, considered bridges 
with ADT of 20,000 vehicles or more as high, and vehicles with 10,000 – 19,999 as moderate. This attribute 
represents the increased rate of damage accumulation that tends to accompany high ADT levels. The 
attribute L.5, Rate of Deicing Chemical Application, considers the ADT level and if the bridge is located in 
an urban area or on an Interstate. Bridges with ADT > 10,000 vpd or located on Interstates or in urban 
areas are ranked as high, non-interstate bridges with ADT of between 2,000 and 10,000 vpd are rated as 
moderate, and less than 2,000 are rated as low.  

These attribute criteria are not independent, and therefore, the relationship between the attribute 
criteria needed to be considered for the MC simulation. If a bridges’ ADT levels were identified as high or 
moderate for L.1, that same bridge would have to be defined as high for L.5. Therefore, the only variability 
for attribute L.5 was at the moderate or low ranks, and as such the appropriate probabilities were 
calculated based on the total number of bridges with less than 10,000 ADT. The probability values used 
for bridges with an ADT of less than 10,000 vpd are shown in bold in Table 3.6.  

To address the requirement for L.5 that any interstate or urban roadway should be rated as high and any 
bridge with >10,000 vpd should also be rated high, a more detailed study of the ADT values was 
completed. To estimate the number of bridges that could be characterized as an interstate or urban 
bridge, the NBI Item 26, Functional Classification of Inventory Route, was analyzed. The values of NBI Item 
26 were considered to determine those bridges associated with “Principal Arterial – Interstate, Principal 
Arterial-Other” for both urban and rural areas, as well as “Other Principal Arterial” and “Minor Arterial” 
indicated as “Urban.”  

Table 3.6 lists the probabilities based on ADT data to assess if a given bridge should be rated according to 
L.1 and L.5 for the MC Simulation. A simple “if” statement was used to define L.5 based on L.1, meaning 
that L.5 was high if L1 was defined as moderate or high. Among the remaining bridges, it was determined 
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that the likelihood of a given bridge being less than 10,000 ADT and being an interstate/urban bridge 
meeting the definition of L.5 high rating was 39%, and the likelihood of the rating of moderate and low 
was 24% and 37%, respectively.  

Table 3.6. Values for ADT used for bridge deck analysis for WI. 

ADT Level Rank Probability 
(%) 

L.5 -L.1 
(%) 

ADT≥20,000 High 20 - 
ADT 10,000 – 19,999 Moderate 22 - 

ADT <10,000 Low 58 - 
Interstate / Urban or ADT>10,000 High 65 39 

Rural, Non-Interstate, 2,000<ADT<10,000 Moderate 16 24 
Rural, Non- Interstate, ADT<2,000 Low 22 37 

3.3.2.2. Point Estimates 

Probabilities to describe the criteria of the attributes can be determined from existing bridge inventory 
data in many cases, but there are other cases where the data may not be available. For these cases, an 
engineering estimate is needed to determine the probabilities. This section describes some of the 
estimates made in analyzing the deck risk model to illustrate estimating probabilities based on 
engineering judgement.  

There were several attributes in the risk model that did not have data available in the NHS bridge element 
database. This included C.13, Efflorescence / Staining, C.7, Quality of Deck Drainage System, D.29/C.30, 
Corrosion Protection Level, L.2, Dynamic Loading from Riding Surface, and C.28, NDE Applied to 
Component. For these attributes, engineering estimates were used to provide input data for the MC 
simulations.  

A point estimate based on engineering judgement was used for the attribute of efflorescence and rust 
staining. The Manual for Bridge Element Inspection (MBEI) describes efflorescence with rust as CS 3, and 
consequently this definition was applied here. It was assumed that the likelihood (i.e., probability) of 
efflorescence with rust staining on the deck soffit will vary based on the CR of the deck component. It was 
deemed unlikely that a deck rated in CR 7 will have efflorescence with rust staining. The attribute criteria 
indicated that the rating of high for this attribute was defined as having greater than 5% of the deck soffit 
assigned CS 3 (CS 3 > 5%). The rating of moderate was defined as 1% to 5% of the deck soffit (1% ≤ CS 3 ≤ 
5). Since it is unlikely that a CR 7 deck will have a significant amount of rust-stained efflorescence on the 
deck soffit, it was estimated that not more than 3% of CR 7 decks were likely to meet the criteria to be 
rated high and not more that 7% were likely to be rated as moderate. The resulting probability vector was 
[3, 7, 90]. The estimated values are represented by a bar chart shown in Figure 3.5A. Efflorescence with 
rust staining is more likely for CR 6 bridges, but still relatively uncommon, and it was estimated that not 
more than 10% of CR 6 decks had a significant amount of CS 3 efflorescence with rust staining. It was 
estimated that 5% of the population of CR 6 components would be rated as high and 10% would be rated 
moderate, and the resulting probability vector was [5, 10, 85]. For CR 5 deck components, it was assumed 
that up to 40% of this population might have some efflorescence in CS 3, but no more than 20% were 
likely to be affected at the high level and no more than 20% at the moderate level.  

For corrosion protection level, it was assessed that only a small portion of the existing inventory of bridges 
would have low cover or bare reinforcing steel and no overlay or other corrosion protection. It was 
assumed that 5% of the inventory might be CP 1. A significant portion of the inventory is likely to have 
either normal cover with ECR and be rated as CP 2, or normal cover, ECR, and an overlay, and be rated CP 
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3. There would only be a small portion of the inventory that had ECR, normal cover, an overlay, and a 
sealer applied (i.e., CP4). It was assumed that the CP level was not a function of the CR for the component. 
Therefore, the distribution of [5, 40,45,10] shown in Figure 3.5B was assumed for this attribute for CR 7, 
6, and 5 deck components.  

 
Figure 3.5. Probability distribution estimates for the attributes of efflorescence and staining (A) and 

corrosion protection level (B). 

Similar estimates were made for C.7., Quality of Deck Drainage System, L.2, Dynamic Loading from Riding 
Surface, and C.29, NDE Applied to Component. Table 3.7 lists the probability values used for the analysis 
of the bridge deck risk model for Wisconsin. The MC simulations were conducted separately for CR 7, CR 
6, and CR 5 components.  

The probabilities shown in Table 3.7 were used to perform MC simulations to determine the effect of 
weighting the condition attributes. Considering that the MC simulation is run for CR 7, CR 6, and CR 5 
bridges separately, with 10,000 models for each condition rating, the effect of weighting the condition 
attributes differently was studied using different potential weighting schemes and the effect on the 
resulting average value derived from the simulations. The condition attributes were the focus of the study 
for two reasons. First, the results from the back-casting illustrated that different weights for the condition 
attributes generally improved the quality of models based on the assumption that risk will increase as the 
CR for a given component decreases. Second, from a practical standpoint, it would be expected that actual 
damage represented by the condition attributes will have a more significant effect on the relative risk as 
compared with a loading attribute or a design attribute, each of which may contribute to rate of 
deterioration. 



59 

Table 3.7. Table showing probability values for MC Simulation for bridge decks in WI. 

Att. No. Att. Name CR ≥ 7 (%) 
[H/M/L] 

CR 6 (%) 
[H/M/L] 

CR 5 (%) 
[H/M/L] 

C.1 Current Condition Rating (fixed) [0/0/100] [0/100/0] [100/0/0] 
C.2 Current Element CS or plow damage [0/10/90] [2/23/75] [14/42/44] 

C.13 Efflorescence / Rust Staining [3/7/90] [5/10/85] [20/20/60] 
L.1 ADT [20/22/58] [20/22/58] [20/22/58] 

L.5 Rate of Deicing Chemical Application [65/16/22]1 
[39/24/37]  

[65/16/22]1 
[39/24/37] 

[65/16/22]1 
[39/24/37] 

C.7 Quality of Deck Drainage System [1/9/90] [5/15/80] [10/30/60] 
C.29/ 
D.30 Corrosion Protection [5/40/45/10] [5/40/45/10] [5/40/45/10] 

L.2 Dynamic Loading [10/90] [10/90] [10/90] 
C.29 NDT Applied to Component [30/70] [30/70] [30/70] 
1 Depends on L.1, see section 3.3.2.1. 

The MC results for the original risk model for decks in WI are shown in Figure 3.6. The figure shows two 
plots. A column or bar plot shows the distribution of results from MC simulations for CR 7, CR 6, and CR 5 
decks. The ordinate (i.e., y-axis) on the left shows the count from the simulation for each 0.1-width bin of 
data represented by the columns. The second plot shown with curves is the normal distribution for the 
data from the MC models based on the mean and sample standard distribution. It can be observed in the 
figure that the mean OF values increase as the CR decreases. It can also be observed from the column plot 
that the MC results appear normally distributed. It should be noted the results from the weighted sum 
model are not continuous because only certain values of the OF are possible when the attribute scores 
are summed. As a result, the appearance of the column plot depends on the width of the bins assigned to 
the data and how the bin width interacts with the OF values. For example, a gap appears in the low OF 
category because there are values that cannot be produced by the weighted sum model. 

 
Figure 3.6. Results of MC simulations for decks with CR 7, CR 6, and CR 5. 
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The cumulative distribution functions from the MC simulations are shown in Figure 3.7. The figure shows 
the distribution function for the unweighted risk model and a model that is weighted by multiplying the 
CR and CS by a factor of 2. For decks with CR 7, the unweighted model estimates about 61% of CR 7 decks 
will fall in the remote category for the OF. When the model is weighted, the likelihood of a CR 7 deck being 
rated in the remote category was increased to 76%.  

When the model is weighted, it has the effect of shifting the CR 7 data to the left and the CR 5 data to the 
right as shown in Figure 3.7. When the attributes C.1 and C.2 are increased from 20 points to 40 points, 
the total number of points in the model is increased by 40 points. Since components in CR 7 score 0 points 
for the CR attribute, the proportion of the available points scored by a CR 7 component is reduced. Since 
the proportion of the CR attribute is increased in the weighted sum model, CR 5 components scored 
higher, and therefore, the cumulative distribution curve shifts to the right. This is significant because it 
provides a means of calibration of the model that applies not only to the CR and CS attributes, but to any 
other attribute as well. 

 
Figure 3.7. Cumulative distribution function based on MC simulations for unweighted and weighted 

models. 

To illustrate the effect of increasing the weights of individual condition attributes on the overall results of 
the risk model, different weightings of CR and CS attributes were considered. Although any of the 
attributes in the model can be weighted in a certain way to better represent engineering judgement and 
to meet the target ranges, the condition-related attributes link the risk models to the standard methods 
of condition assessment, and the sensitivity studies of the back-casting data indicated weighting these 
attributes improved the quality of the model. To test the effect of weighting CR and CS, the MC simulation 
model was prepared with different weighting scenarios. The weighting scenarios included the original, 
unweighted model and models with the attributes C.1, CR, and C.2, CS multiplied by 1.5, 2.0, 2.5, 3.0, 3.5, 
and 4. The results are shown in Figure 3.8 which illustrates how increasing the multiplier for C.1 and C.2 
affects the mean value of the MC simulations for deck components based on the risk model.  



61 

 
Figure 3.8. Effect of weighting on the mean values of the OF for CR 5, CR 6, and CR 7 deck components. 

These data demonstrate how increasing the weight of the condition-related attributes reduces the mean 
value of the risk model for bridge components in good condition and increases the mean value for 
components in CR 5. Components in CR 6 change only a small amount. These data, along with parametric 
studies of the MC simulation process presented later in the report, can provide guidance to users on how 
to calibrate the risk models to be consistent with engineering judgement.  

3.3.3. Effect of ADT on Example R/C Deck Model 
An important question for most engineers would be how high ADT bridges compare with low ADT bridges 
when the risk model is applied. This obviously depends on if the risk model includes an ADT attribute, an 
attribute with criteria that depends on ADT, or an attribute that is correlated with ADT. The WI deck model 
has an ADT (L.1) attribute and an attribute with criteria that depend on ADT, L.5, Rate of De-Icing Chemical 
Application, as previously described.  

To analyze the effect of high ADT, MC simulations were completed assuming that all the bridges had an 
ADT of greater than 20,000 vpd, and all the bridges have ADT of less than 10,000 vpd. In this way, the 
effect of high ADT on model results can be quantified. The results are shown in Figure 3.9, which shows 
the cumulative probability distribution for decks with high ADT and low ADT.  

As the data shows, for high ADT bridges, only 36% of CR 7 deck components will be rated as having remote 
likelihood, while for low ADT bridges, 99% will be rated as having a remote likelihood. Recall that based 
on the proposed risk matrix, components rated as remote may be eligible for a 72-month interval when 
the CF is moderate or high (CF 2 or CF 3). Components rated with a low OF are only eligible for a 72-month 
interval if the CF is moderate or low (CF 1 or CF 2). Most CR 6 decks will be rated as having a low OF, 
meaning that if the CF was high, the assigned inspection interval will be 48-months. This fits with the NBIS 
requirements for Method 1 that states that components in CR 6 can have a 48 interval regardless of the 
ADT level on the bridge. High ADT reduces the likelihood of the deck being rated as remote, meaning that 
when other attributes are increased (for example, the deck has poor drainage or soffit damage) the OF 
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will be low rather than remote. Importantly, the model shows that simply having high ADT will not prevent 
a deck from being rated as remote, in fact, almost 40% of decks will still be rated as remote, considering 
both CR 7 and CR 6 decks. 

 
Figure 3.9. Cumulative distribution of results from MC simulations for low and high ADT bridges. 

This result indicates that the risk model is sensitive to the effect of increased ADT on the deterioration 
pattern of decks with increased ADT reducing the likelihood for a particular deck to be rated as remote as 
compared with the overall population of decks. 

3.3.4. Application of NDE  
The application of NDT technologies for RBI has the assumed effect of reducing the uncertainty in the 
condition assessment for a given component. Practically speaking, NDE technologies are primarily applied 
to decks of bridges. While other components are sometimes subjected to NDT, such as steel members 
with section loss or a potential for cracking, these applications are not widespread. Bridge decks are most 
commonly tested with technologies such as infrared thermography (IRT) or ground penetrating radar used 
to assess the condition and potential for future damage, respectively.  

The WI deck model included an attribute to consider if a given bridge had been subjected to NDT. 
Wisconsin currently has a policy to assess bridge decks with IRT. It was assumed for the previous analysis 
that 70% of bridge decks in the inventory had been assessed with NDT. The rank of the attribute was high, 
meaning 20 points are assigned to any bridge that was not assessed with NDT, raising its relative risk as 
compared with a component that had undergone NDT. This parameter for NDT was analyzed for two 
purposes. First, to assess how the inclusion of NDT affects the model in terms of overall results, and 
second, how the ranking of an attribute affects the outcome of the risk model. For example, if the weight 
of the NDT attribute was 10 points instead of 20 points.  

To illustrate the impact of having an NDT attribute, the MC simulation was conducted with the weighted 
model (CR, CS x 2) assuming 90% of the decks in the inventory were assessed with NDT. A second 
simulation was conducted assuming only 10% of the decks were assessed with NDT. The overall results 
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are represented in Figure 3.10 that shows the cumulative probability distribution for the two scenarios. 
The figure shows only data for CR 7 and CR 6 for clarity. The difference in the overall results is significant 
in the sense that many more CR 7 decks will be considered to have remote likelihood if NDT is applied as 
compared with decks without NDT. When very few decks (10%) have been assessed with NDT, only 55% 
of the decks will be ranked as remote, while if 90% of the decks had NDT, the overall results will place 83% 
of the decks in the remote category. On the other hand, decks in CR 7 fall primarily in the low to remote 
range regardless of whether NDT is applied, aligning with the target ranges.  

 
Figure 3.10. MC simulation results showing effect of NDT on OF values. 

The second question is how the weight of the NDT attribute affects the results of the overall model. For 
example, if the RAP had ranked the effect of NDT to be low, then that attribute would only be assigned 
10 points, and therefore have less of an overall effect on the model. The results of the analysis with the 
NDT attribute ranked low are shown in Figure 3.11. As shown in the figure, the proportion of the CR 7 
bridges categorized as remote will be 69% if only a few bridges (10%) were subjected to NDT and 82% 
when most of the decks (90%) were assessed with NDT. Comparing the results shown in Figure 3.10 and 
Figure 3.11 illustrates the effect on the mean risk score of a particular attribute being ranked low rather 
than high by the RAP.  

3.3.5. Comparison of MC Simulation and Back-Casting Results 
The MC simulation process provides a methodology for analyzing the risk models developed by a RAP in 
a data-driven process based on available bridge inventory data and engineering estimates of the attribute 
probability values. An important question is how the MC simulation compares with results from the back-
casting process. The back-casting data provides real results from in-service bridges based on the risk 
models developed by the RAP and review of inspection records. The MC simulation predicts results based 
on probability theories and bridge inventory data. To validate the MC simulation procedure developed 
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through the research, the statistical results from the back-casting and the MC simulation outputs were 
compared.  

 
Figure 3.11. MC results for 90% NDT and 10% NDT with NDT at 10 points. 

The back-casting data combines the results from different RAP models applied to bridge components in 
the sample bridges. As a result, it would not be expected that the results from an MC simulation would 
match exactly the back-casting results, but the trends should be similar. To compare the results from the 
MC simulation and the back-casting results, two risk models developed by RAPs were compared with the 
back-casting results. The risk model for decks in Missouri and the risk model for steel superstructures 
developed in Connecticut were compared with the deck and steel superstructure data from the back-
casting. 

Figure 3.12 shows the results from the MC simulations of these two models and the back-casting results, 
with the back-casting results noted as “BC,” and the MC simulation results formed from the Missouri deck 
and the Connecticut steel superstructure risk models marked as “MO” and “CT,” respectively. Figure 3.12A 
shows the statistical results from the analysis of 60 bridge decks from sample bridges and the MC 
simulation of the risk model for bridge decks in MO. The results of the back-casting and the MC simulation 
are remarkably similar for R/C deck components in CR 7. In fact, the likelihood of the OF being remote are 
the same, 72%. The results for CR 6 and CR 5 decks do not match as closely but are similar. As mentioned, 
it would not be expected that the MC simulation and the back-casting would be the same since the back-
casting results are from six different, albeit similar, risk models. Additionally, the back-casting results are 
from six different states across the county, whereas the MO results are based on statistics from the MO 
bridge inventory and point estimates based on engineering judgement. If the point estimate were chosen 
differently, or statistics from a different bridge inventory were used, the data may not align as closely.  

Figure 3.12B shows the results for the steel superstructure corrosion damage mode. This figure compares 
the results from the 40 steel superstructures in the back-casting study and the risk model from the state 
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of Connecticut. Here, the results do not match as closely for steel superstructure components in CR 7, but 
the results are similar.  

 
Figure 3.12. Comparison of the back-casting results and MC simulation for A) R/C decks and B) steel 

superstructure corrosion damage.  

The attributes and attribute criteria could be adjusted to make the results from the MC simulation and 
the back-casting results align more closely. A particular owner could use this method to verify the risk 
models applied to their own inventory, following the procedure of sampling bridges, applying the risk 
model to actual components, and comparing the results to the MC simulation based on the inventory 
data. In this way, the risk model can be calibrated and then verified for a given bridge inventory.  
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3.4. Parametric Study of the MC Simulation process  
The MC simulations provide an effective methodology for analyzing the risk models to estimate 
appropriate weights and assess the likely outcome of the models when applied to a family of bridges. The 
risk models commonly have a different number of attributes, generally ranging from a low of four 
attributes to a high of 12 attributes in this study. The number of attributes in the model will affect the 
outcome because each attribute constitutes a smaller portion of the model as the number of attributes is 
increased. Combined with the almost infinite combination of probabilities for the individual attributes, it 
can be difficult to assess the effect of the number of attributes in the model, and how any one of the 
attributes being rated as high might affect the outcome of the model.  

To provide some insight on how the number of attributes in the model and their respective probabilities 
affect a weighted-sum risk model, a parametric study was conducted. The purpose of the study was to 
illustrate general trends of the MC simulation of the risk models to observe several effects: 

1. How does the number of attributes affect the outcome of the risk models? 
2. How does the estimated attribute probabilities effect the outcome of the risk models?  
3. What is the impact from a single attribute being rated as high, while all others are rated according 

to their individual likelihoods?  
The parametric study considered a generic risk model with 14 attributes and probabilities ranging from 
the low end, i.e., a low likelihood of a particular attribute being rated as high, through the relatively high 
end, where the likelihood of a given attribute being rated high is increased. The specific probabilities were 
as shown in Table 3.8 for five different cases. For each case, all attributes were assigned the same 
probabilities to provide results illustrating the behavior of models with generally low probabilities as 
compared with models with generally high probabilities and illustrate the trends of the data.  

The low probability models (Case A) considered probabilities for each attribute of [5/10/85]. The 
likelihood of a given attribute being rated high was doubled to produce the resulting probabilities shown 
in Table 3.8 for each case. Case E considers the model without probabilities, such that all attributes are 
initially rated as low. For case E, the MC simulations were not used because this scenario modeled a linear 
analysis of simply changing an individual attribute’s rating from low, with 0 points assigned for that 
attribute, to high, with 20 points assigned for that attribute.  

Table 3.8. Listing of probabilities for parametric study models. 

Case A 
[H/M/L] 

Case B 
[H/M/L] 

Case C 
[H/M/L] 

Case D 
[H/M/L] 

Case E 
[H/M/L] 

[5/10/85] [10/20/70] [20/40/40] [40/40/20] [100/0/0] 

The MC simulations were performed for models with 14, 12, 10, 8, 6, 5, and 4 attributes. For each model, 
the results of having one, two, three, or four attributes rated as high were determined from MC 
simulations. Results are presented as the mean value of the MC results for a component in CR 7, meaning 
that one of the attributes (C.1, Current Condition Rating) is always rated as low. Results are shown in 
several figures. First, considering the raw risk score itself, Figure 3.13A and Figure 3.13B show the results 
for different numbers of attributes in the model and the effect of one, two, three, or four attributes rated 
as high. The results for case A with probabilities of [5/10/85] are shown in Figure 3.13A, and results for 
case C with probabilities of [20/40/40] are shown in Figure 3.13B as examples. The figure shows the mean 
risk score (i.e., OF value) on the ordinate and the number of attributes rated as high on the abscissa. It 
can be observed in the figure that the basic model without any attributes rated high is greater for case C 
as compared with case A. Since the MC simulation is selecting values (i.e., ratings) for each attribute 
randomly according to the defined probability distribution, the rating of high and moderate are selected 
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much more frequently for case C as compared with case A, resulting in a greater mean value of the risk 
score. For case A, the average mean risk score was found to be 0.31 and for case C, the mean risk score 
was 1.26. The mean risk values increase as the number of attributes rated high increase as would be 
expected.   

 
Figure 3.13. Risk scores for case A (A) and case C (B) for different numbers of attributes rated as high. 

Notably, it can be observed in the figure that the relationship between the number of attributes rated as 
high and the risk score is linear, and the rate of increase is greater for case A than for case C. Since any 
given attribute is four times as likely to be rated as high in case C as compared with case A due to the 
probabilities listed in Table 3.8, the effect of having one or more of the attributes being rated high is 
smaller. This illustrates the trend in the model that could be useful for estimating, for example, how the 
risk model will change if analyzed for only the portion of bridges with high ADT in relation to how many 
attributes are in the mode and the associated probabilities. If one individual attribute such as ADT is 
always rated as high, the effect is larger if the other attributes generally have low probabilities of being 
rated as high, and the effect will be more pronounced with fewer attributes in the model. However, 
overall score will be smaller when the probabilities are lower.  



68 

The results can be summarized by assessing the change in the risk score for any single attribute being 
rated as high. Figure 3.14 shows the results from analyzing the change in risk scores as the number of 
attributes is increased. Figure 3.14A shows the number of attributes on the abscissa. The primary ordinate 
shows the change in the risk score, and the secondary ordinate shows the change in the risk score as a 
proportion of the overall scale of 0 to 4 points. The figure shows that the change in risk score is greater 
when the overall probabilities are relatively low, as previously discussed. For example, the 14 attribute 
model changes 0.29 points (≈7%) for the case E (linear model) and only 0.11 points (≈3%) for case D 
([40/40/20]) for a 14-parameter risk model. The relationship between the change in risk score and the 
number of attributes in the model is parabolic as shown in Figure 3.14A. 

The relationship is linear when considering the proportion of the model formed by each attribute as 
shown in Figure 3.14B. In other words, the change in the OF value is proportional to the percentage of the 
model derived from any one attribute. For a model with relatively high probabilities for individual 
attributes, the change in risk model when a single attribute is rated as high is smallest, while the change 
is largest for a model with relatively low probabilities. The linear model produces the largest change, and 
if the model has only four parameters, a single attribute rated as high changes the model by one OF 
category, e.g., from low to moderate.  

The parametric study does not provide specific values but illustrates the tendencies of the risk models 
when analyzed using the MC simulation approach developed through the research. In terms the effects 
on the model, the study showed the following:  

1. How does the number of attributes affect the outcome of the risk models? 
The smaller the number of attributes, the larger the contribution of each attribute to the final OF 
value. This means that the change in the OF value resulting from any attribute being rated high 
will increase as the number of attributes decreases. This is an obvious result for the linear model, 
but also holds true with the MC simulations. It was also shown that the change in the OF value is 
proportional to the percentage of the model of each attribute.  

2. How do the estimated attribute probabilities affect the outcome of the risk models?  
The mean value of the OF resulting from the MC simulation is smaller when the probability of high 
or moderate ratings is lower. As these probabilities increase, the mean value of the OF calculated 
from the MC simulation increases. This means that when the probability of attributes being rated 
high is increased, the cumulative distribution function such as that shown in Figure 3.12 will move 
to the right.  

3. What is the impact from a single attribute being rated as high, while all others are rated according 
to their individual likelihoods?  

The change in the OF values resulting from any one attribute being rated high is greater when the 
probability of high and moderate is smaller. However, the mean risk score is smaller. The effect of an 
individual attribute being rated high is reduced as the number of attributes increases. 

These results show that the effect of any individual attribute having increased probabilities will have a 
smaller when other attributes have relatively high probabilities, and larger when other attributes have 
low probabilities. It should be noted that the MC simulation results shown are for cases where every 
attribute in the model has either high probabilities or low probabilities. Most real models will have a 
mixture of relatively high and relatively low probabilities. 
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Figure 3.14. Plot showing change in risk scores as a function of the number of attributes in the model. 

3.4.1. Application to a Real Model  
A parametric study was completed for an actual RAP model from the study. The purpose was to gain 
insight into how the number of attributes affected the model outcomes, the effect of having one attribute 
rated as uniformly high, and the effect of the probability distributions. A 10-parameter deck model from 
the state of Missouri was used for the study. The number of attributes in the model was reduced by 
removing attributes from the MC simulation.  

The attributes and probabilities used for the model are shown in Table 3.9. The table lists 10 different 
attributes, each with assigned probabilities of being rated as very high, high, moderate, or low. The point 
values are different for different attributes based on the rank assigned by the RAP. The condition 
attributes C.1 and C.2 are weighted to be worth 40 points each. Most of the other attributes are scored 
on a 20-point scale, with two exceptions. The attribute D.29/C.30, Corrosion Protection, was assigned 30 
points and Attribute D.24, Superstructure Flexibility, was ranked as moderate by the RAP and only 
assigned 15 points.  

As shown in the table, a typical risk model has a mix of points assigned and probabilities. Understanding 
how the likelihood for each attribute and the number of attributes in the model affect the outcome is 
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challenging since there are an infinite number of combinations, though the tendencies were described in 
the previous section. To study this specific model, different numbers of attributes were used to compare 
the mean value from the MC simulation (based on the probabilities shown in Table 3.9) to the mean value 
when a single attribute was rated high. Two studies were completed. Study 1 compared a base model 
using the original probabilities to results when the attribute C.13, Efflorescence / Staining, was selected 
to be uniformly rated as high. This attribute has a low likelihood of being rated as high or moderate based 
on the probabilities applied. The probabilities were based on an engineering estimate and reflect the fact 
that a CR 5 deck is more likely to be affected by efflorescence on the deck soffit as compared with a deck 
in CR 7. The five attributes that were included in all models in Study 1 are shown in bold in Table 3.9, and 
attribute C.13 is italicized to indicate the attribute that was set to high.  

Table 3.9. Probabilities for parameter study with weighted models. 

Attribute 
Probability 

CR ≥ 7 
(H/M/L, %) 

Probability 
CR 6 

(H/M/L, %) 

Probability 
CR 5 

(H/M/L, %) 

Total 
Points 

Study 1 

Total 
Points 

Study 2 
C.1 Current CR [0/0/100] [0/100/0] [100/0/0] 40 40 
C.2 Current CS [0/20/80] [5/60/35] [20/40/40] 40 40 

C.13 Efflorescence/Staining [0/5/95] [5/5/90] [10/20/70] 20 20 
L.1 Average Daily Traffic [40/40/20] [40/40/20] [40/40/20] 20 20 

L.5 Rate of De-icing Chemical 
application [25/25/50] [25/25/50] [25/25/50] 20 20 

C.7 Quality of Deck Drainage [5/5/90] [10/10/80] [10/10/80] 20 20 
D.29/C.30 Corrosion 

Protection [5/45/45/5] [5/45/45/5] [5/45/45/5] 30 30 

C.27 Rate of Deterioration [5/5/90] [5/5/90] [5/5/90] 20 20 
D.24 Superstructure Flexibility [5/95] [5/95] [5/95] 15 15 

D.8 Concrete Mix Design [10/60/30] [10/60/30] [10/70/20] 20 20 
   Total 245 245 

Study 2 used the same model probabilities as Study 1, but the attribute that was rated high was L.5, Rate 
of Deicing Chemical Application. The probability estimates used for this attribute were relatively high 
[25/25/50]. The five attributes that were included in all the models are shown in bold in the table and L.5 
is shown in italic to indicate it was the attribute rated high.  

Figure 3.15A and Figure 3.15B show the mean OF values determined from the MC simulations. Figure 3.15 
(A) shows the mean value results from Study 1 and Figure 3.15B shows the mean value results from Study 
2. The data shows the OF results for CR 7, CR 6, and CR 5 decks. The figures show the number of attributes 
in the model on the abscissa and the resulting risk score on the ordinate. It can be observed in these data 
that as the number of attributes goes down, the OF values generally increase for between 7 and 10 
attributes, but level off or decline for models with 6 attributes. For models with five attributes, in some 
cases the risk score is increased relative to models with 6 attributes, and in some cases, it is reduced. 
There is a lack of a consistent trend because the individual attributes have different probability 
distributions. If the attribute has a relatively high likelihood of being rated as high, removing the attribute 
from the model can result in the risk score declining when it is removed. For example, the models with 
five attributes in study 1 does not have attributes L.1, ADT, and L.5, Rate of Deicing Chemical Application. 
Each of these attributes have relatively high likelihoods of being rated as high and when these are 
removed, the overall risk value decreased in Study 1. For Study 2 the attribute L.5 was not removed for 
the five-attribute model and the risk score increased relative to the six-attribute model.  
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The change in the risk model when a specific attribute was rated as high was analyzed and compared with 
the parametric study of the generic 14 attribute model described in the previous section. Figure 3.16 
shows the results from Study 1 and Study 2 superimposed on results from the 14 parameter model 
discussed in the previous section. For study 1, the attribute that was changed to high was C.13, which had 
a relatively low probability of being rated as high. Consequently, when this attribute is changed to be 
rated as high, the impact on the risk is close to the linear model. For study 2 the attribute that was 
uniformly set to high was L.5, Rate of Deicing Chemical Application. This attribute had relatively high 
probabilities [25/25/50] based on an engineer’s estimate. Consquently, when it is changed from having 
its original probilities to being uniformly rated as high, the change in the mean values resulting from the 
MC simulations is smaller, close to the lowest values found from the 14 parameter study, as shown in 
Figure 3.16.  

These data illustrate the tendencies of the weighted sum risk models that can be used by engineers 
implementing RBI practices. Insight regarding the effect of weighting individual attributes, the number of 
attributes in the model, and the probability distributions can be used in decision-making when RAP results 
are formed into risk models. These data also show that the sensitivity of the MC simulations to the 
probabilities assigned to individual attributes is limited. As the number attributes in the model increased, 
the sensitivity to the probability distribution is reduced, as shown in Figure 3.14. These data suggest point 
estimates used to determine probabilities using engineering judgement do not require high precision, 
although obviously the accuracy has some impact on the overall model results. 

 
Figure 3.15. Risk scores from deck model with CP system and other attributes from original MO deck 
model. 
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Figure 3.16. Plot showing change in risk scores for Study 1 and Study 2.  
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Chapter 4.  
Conclusions and Discussion 

4.1. Conclusions 
This report describes the results of back-casting of 60 sample bridges using risk models developed by RAPs 
in six states. The results of the back-casting were analyzed in terms of the risk scores for individual 
components and inspection intervals determined by risk analysis. Sensitivity studies of the back-casting 
data were used to analyze potential methods of weighting attributes in the risk models. Based on the 
back-casting results, a new data-driven methodology for analyzing the risk models using MC simulations 
was developed and tested. This methodology uses probability and data from an owner’s bridge inventory 
to simulate the outcome from risk models developed by RAPs. In this way, the risk models can be analyzed, 
calibrated, and verified using data from bridges.  

An analysis of the new NBIS and associated FHWA guidance for inspection intervals was completed that 
provided target ranges for risk models based on the CR of bridge components. The target ranges provide 
guidance for analyzing risk models and identifying risk levels for bridge components. This analysis also 
resulted in a proposed a modification to the risk matrix initially included in the NCHRP 782 report. This 
revised matrix allows for bridges assigned a high CF to be assigned a 72-month inspection interval when 
the OF category is remote. The proposed change to the risk matrix was supported by the data from 60 
sample bridges that showed only CR ≥ 7 components with good reliability characteristics (i.e., attributes) 
were categorized in the remote OF range, while others were categorized in the low or moderate OF range.  

Back-casting was conducted on 60 sample bridges in six states. The sample bridges were randomly 
selected from the bridge inventory and included bridges with CRs ranging from CR 2 to CR 9, with an 
average CR of 6. Risk models developed by the RAP were used to determine the risk score and categorize 
the OF as remote, low, moderate, or high.  

Sensitivity studies of data from the back-casting showed that the weighting of certain attributes improved 
the quality of the risk models as compared with the target ranges. The results of back-casting analyzed 
with both weighted risk models and unweighted risk models showed that weighting the CR and CS 
attributes improved the quality of results. 

The sample bridge components of deck, superstructure, and substructure were analyzed using the risk 
models developed by the six RAPs. The analysis showed that the weighted risk models were effective for 
determining the relative risk of bridge components. The risk models reflected the target ranges developed 
in the research and generally rated components in CR ≥ 7 in the remote or low OF categories, CR 6 
components in the low to moderate range, and CR 5 components in the moderate to high range. However, 
the risk models also identified bridge components that did not match the target ranges. For example, 
when components in good condition (i.e., CR ≥ 7) were analyzed individually using the weighted risk 
models, 7% of the components were rated as having a moderate OF, 57% were rated in low category, and 
36% were rated as having a remote OF (see Figure 2.11). These data show that the risk models were able 
to identify components with elevated risk when the general CR indicated the component was in good 
condition. This is significant because it illustrates that the risk models developed by the RAPs were able 
to sort bridge components based on risk using the attributes and criteria in the risk models.  

The inspection interval was determined for the CF factor of moderate and high based on the controlling 
component and damage mode for each bridge. When weighted risk models were applied, it was found 
that 35% of the sample bridges could have an inspection interval of 72 months when the CF was moderate. 
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If the CF was high, only 8% of the bridges could qualify for a 72-month inspection interval. These results 
were based on randomly sampled bridges, many of which were not in good condition (i.e., CR ≥ 7).  

A separate analysis of bridges in good condition showed that 100% of the bridges could have a 72-month 
interval if the CF were moderate. If the CF were high, 46% of the bridges in good condition could have an 
inspection interval of 72 months. These data indicate that implementing an extended inspection interval 
policy including Method 2 analysis will place a substantial number of bridges in good condition on a 72-
month inspection interval. This allows for the reallocation of inspection resources toward bridges with 
elevated risk, which is the primary goal of the RBI approach.  

A methodology based on MC simulation was developed for analyzing the risk models and predicting the 
performance of the models when applied to a family of bridges. It was shown that this methodology can 
be used to analyze different scenarios and to adjust attribute weights to meet target ranges. Importantly, 
the research showed that this approach was effective for identifying components in good condition that 
represent elevated risk when compared with the risk model simulations. The MC simulation methodology 
can be used to identify those bridges that present elevated risk and require shorter inspection intervals 
and those that do not have elevated risk. This is precisely the objective of the risk analysis. It was shown 
that the methodology was successful in identifying components with elevated risk and could be used to 
demonstrate the quality of the risk models. This provides a critical tool for implementation of the RBI 
approach and gaining approval of extended inspection interval policies.  

Summarizing the conclusions of this phase of the research in terms of the objectives were as follows:  

1. Determine if the risk models developed by the RAPs were effective for characterizing the relative 
risk of individual bridge components.  

The back-casting showed that the quality of the initial risk models developed by the RAPs was improved 
by weighting the risk models. The weighted models were effective for characterizing the risk of individual 
components when compared with the target ranges.  

2. Develop a process for analyzing the risk models to determine appropriate weights for attributes.  

A methodology was developed based on MC simulations that was able to model the outcome of the risk 
models for a family of bridges. It was shown that this model could be used to calibrate the risk models to 
match the target ranges by weighting attributes. The methodology for modeling the outcome of applying 
the risk models to bridge components performed well when compared with actual data from the sample 
bridges.  

4.1.1. Discussion 
This report describes results from the back-casting process and documents methods for implementing an 
RBI interval within the constraints of the NBIS. This included developing a new process that provides a 
methodology for analyzing risk models developed by RAPs and completing key task such as weighting the 
attributes and assessing the quality of the risk models by either comparing results from the MC simulation 
to actual results from sample bridges or calculating projected risk scores and comparing those scores to 
the MC simulation. The methodology also provides a mechanism for bridge owners to predict how many 
bridges in their inventory may be eligible for extended inspection intervals.  

Most of the analysis completed utilized element-level inspection data to determine the ratings for 
individual attributes and to determine probabilities to be inputted to the MC Simulation. A practical 
question is whether bridges that are not subject to element-level inspections can be analyzed using these 
approaches. For Method 1, there is clearly no provision requiring element-level inspection because the 
criteria for Method 1 only refer to component CRs, not element-level CSs. The NBIS does not require that 
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a bridge must have element-level data to be eligible for extended inspection intervals using Method 2. 
However, it does require that the extended inspection interval policy include “inspection procedures and 
data collection that are aligned with the level of inspection required to obtain the data to apply the 
criteria.” One way to meet this requirement is through element-level inspection, and the attributes in the 
risk models have been developed with criteria that match element-level inspection results in many cases. 

However, bridges that do not have complete element-level inspections could be included in an extended 
interval policy if the data necessary to rate the criteria were collected during an inspection. This data could 
be collected through alternate inspection procedures that require the specific items included in the risk 
models to be documented during an inspection. This may be a subtle point, since much of the data 
collected during an element-level inspection will still need to be collected, but only for bridges included 
in the extended inspection policy, and only for relevant criteria from the risk model. Bridges that are not 
included in the policy will not require element-level inspection data. So, for example, an owner could 
require element-level data matching the risk models to be collected for bridges in good condition and 
utilize Method 1 for bridges in fair condition.  

The methodology developed for analyzing the risk models using MC simulation also relies on element-
level inspection data. In this project, the element-level data for NHS bridges was used to provide 
probabilities to be inputted to the MC simulation. For states that conduct element-level inspection on a 
larger portion of their bridge inventories, the analysis could be based on that larger population of bridges. 
The probabilities MC simulations utilize probability estimates that express general trends which show, for 
example, the proportion of joints that are likely to be rated high according to the risk model criteria. As a 
practical matter those estimates could be extended to portions of the inventory that do not currently 
have element-level inspection results to analyze the likely results from implementing RBI for those 
bridges. This assumes that the population of bridges that are not subject to element-level inspections 
have similar deterioration patterns to those bridges that are subject to element-level inspections. For 
example, state-owned bridges that are not on the NHS system but receive similar levels of maintenance 
as the NHS bridges. For local bridges, the RAP could identify transfer mechanisms to relate the existing 
element-level data statistics to locally owned bridges in a conservative way.  

4.1.2. Implementation of MC Simulations 
The MC simulations used in the research are relatively simple to implement. The data used to form 
probabilities for rating attributes is generally available from existing inventory data. For data that are not 
available, engineering judgement can be used to form point estimates of the probability of a given 
attribute being rated high, moderate, or low. As shown in the parametric studies, the sensitivity of the MC 
simulations to the probabilities assigned to individual attributes is limited and is reduced as the number 
of attributes in the model increases. As a result, high precision is not required for the point estimates, 
although obviously the quality of the input affects the quality of the output.  

The MC simulation process in general is well-known and widely used, particularly in the finance industry 
to predict future performance based on past trends. It is also common in the risk analysis field, though 
generally structured differently than the models used in this research. Because MC simulation is common 
in many industries, there are myriad software available for performing MC simulations. For this research, 
the MC simulations were performed using Microsoft Excel spreadsheets. A single data table was used to 
produce 30,000 simulations. Therefore, the MC simulation process can be implemented by either 
purchasing software designed for that purpose or developing relatively simple algorithms in Microsoft 
Excel.   
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APPENDIX A Listing of Attributes for RBI 
This appendix includes the listing of attribute and codes used for risk models included in the report. 
Attributes from the NCHRP report are shown in plain text. Attributes identified through the present study 
are shown in bold text. Attributes in italics were included in the original NCRHP report but modified for 
the present study. 

Table A-1. Listing of screening and loading attributes for RBI.  

No.  Title No.  Title 
S.1 Current Condition Rating L.1A Average Daily Traffic ADT 

S.2 Fire Damage L.1B Average Daily Truck Traffic ADTT 
S.3 Susceptible to Collision L.2 Dynamic Loading from Riding Surface 
S.4 Flexural Cracking L.3 Exposure Environment 
S.5 Shear Cracking L.4 Likelihood of Overload 
S.6 Longitudinal Cracking in Prestressed 

Elements 
L.5 Rate of De-Icing Chemical Application 

S.7 Active Fatigue Cracks Due to Primary 
Stress Ranges 

L.6 Subjected to Overspray 

S.8 Details Susceptible to Constraint Induced 
Fracture (CIF) 

L.7 Remaining Fatigue Life 

S.9 Significant Level of Active Corrosion or 
Section Loss 

L.8 Overtopping / High Water 

S.10 Design Features - - 
S.11 Rate of Deterioration  - - 
S.12 Fabrication Defects and / or Connection 

Damage  
- - 

S.13 E Or E’ Details - - 
S.14 Scour Rating  - - 
S.15 Waterway Adequacy - - 
S.16  Current Element Condition State - - 
S.17 Construction Quality  - - 
S.18 Exposed Strand (PSC) - - 
S.19 Load Rating Factor - - 
S.20  Scour Rating - - 
S.21 Settlement Or Rotation - - 
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Table A-2. Listing of design attributes used for RBI.  

No.  Title No.  Title 
D.1 Joint Type D.15 Constructed of Weathering Steel 
D.2 Load Posting D.16 Element Connection Type 
D.3 Minimum Vertical Clearance D.17 Worst Fatigue Detail Category 
D.4 Poor Deck Drainage and Ponding D.18 Skew 
D.5 Use of Open Decking D.19 Presence of Cold Joints 
D.6 Year of Construction D.20 Construction Techniques and 

Specifications 
D.7 Application of Protective Systems D.21 Footing Type 
D.81 Concrete Mix Design D.22 Subsurface Soil Condition 
D.9 Deck Form Type D.23 Age of Component 

D.10 Deck Overlays D.24 Superstructure Flexibility 
D.11 Minimum Concrete Cover D.25 Embedded Girder Ends 
D.12 Reinforcement Type D.26 Structure Type  
D.13 Built-up Member D.27 Feature Under  
D.14 Constructed of High-performance Steel D.29 Corrosion Protection Level 

 

Table A-3. Listing of condition attributes for RBI. 

No.  Title No.  Title 
C.1 Current Condition Rating C.16 Longitudinal Cracking In Prestressed 

Elements 
C.2 Current Element Condition State C.17 Coating Condition 
C.3 Evidence of Rotation or Settlement C.18 Condition of Fatigue Cracks 
C.4 Joint Condition C.19 Presence of Fatigue Cracks Due to 

Secondary or Out of Plane Stress 
C.5 Maintenance Cycle C.20 Non-Fatigue Related Cracks or 

Defects 
C.6 Previously Impacted C.21 Presence of Active Corrosion 

  C.22 Presence of Debris 
C.7 Quality Of Deck Drainage System C.23 Wear / Abrasion or Rutting 
C.8 Corrosion-Induced Cracking C.24 Bearing Condition  
C.9 General Cracking C.25 Construction Quality  

C.10 Delamination C.26 Debris Damage  
C.11 Presence of Repaired Areas C.27 Rate of Deterioration  
C.12 Presence of Spalling C.28  Presence of Repair Areas 
C.13 Efflorescence / Staining C.29 NDT Applied to Component 
C.14 Flexural Cracking C.30 Corrosion Protection Level 
C.15 Shear Cracking C.31 Bearing Condition  
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